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A B S T R A C T

In this paper we argue that predictive processing (PP) theory cannot account for the phenomenon of affect-
biased attention – prioritized attention to stimuli that are affectively salient because of their associations with
reward or punishment. Specifically, the PP hypothesis that selective attention can be analyzed in terms of the
optimization of precision expectations cannot accommodate affect-biased attention; affectively salient stimuli
can capture our attention even when precision expectations are low. We review the prospects of three recent
attempts to accommodate affect with tools internal to PP theory: Miller and Clark's (2018) embodied inference;
Seth's (2013) interoceptive inference; and Joffily and Coricelli's (2013) rate of change of free energy. In each case
we argue that the account does not resolve the challenge from affect-biased attention. For this reason, we
conclude that prediction error minimization is not sufficient to explain all mental phenomena, contrary to the
claim that the PP framework provides a unified theory of all mental phenomena or the brain's cognitive func-
tioning. Nevertheless, we suggest that empirical investigation of the interaction between affective salience and
precision expectations should prove helpful in understanding the limits of PP theory, and may provide new
directions for the application of a Bayesian perspective to perception.

1. Introduction: explaining the challenge to PP theory of attention

Suppose you walk your dog uneventfully every day past a house on
the corner of your block. One morning, however, a large Doberman
rushes to the fence, barking and snapping. You jump backwards and for
a moment you fear for your life. From this day forward, you give this
house a bit of extra attention when you walk past, your eyes always
searching the fence for signs of the Doberman, though it is seldom in
fact in the yard. What explains your change in behavior? A common
sense approach would suggest the answer is rather obvious - you do not
like to be startled, and so you selectively attend to that fence over other
aspects of the environment just in case the dog is there, irrespective of
the probability.

As simple as that seems, cases such as these appear to pose a sig-
nificant challenge to predictive processing (PP) models of attention, and
therefore to the prospects of PP as a unified theory of all mental
functioning (Clark, 2013, 2015; Feldman & Friston, 2010; Hohwy,
2012, 2013). Specifically, the PP account of attention as the optimization

of precision expectations holds that attention is allocated on the basis of
selecting those signals expected to be most reliably informative, or
‘highly precise,’ where a signal's precision is the inverse of its variance.
However, this does not currently capture the phenomenon of affect-
biased attention – attention to stimuli that are affectively salient be-
cause of their associations with reward or punishment. Such stimuli can
drive attention in spite of correspondingly low precision expectations,
suggesting that the PP analysis of attention is inadequate. This is in
contrast to Bayesian decision theory (BDT), which may have the re-
sources to accommodate affect-biased attention, though actual models
are lacking and attentional phenomena have been largely unexplored.
Nevertheless, understanding where PP goes wrong is instructive for
future BDT models of affect-biased attention.

1.1. Predictive processing

Predictive Processing (PP) purports to provide a unified account of
all mental functioning, where the brain's single overarching task is to
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minimize surprise. It is a synthesis of several theories that will be ela-
borated on below: Bayesian decision theory, the Free Energy Principle,
and predictive coding.

1.1.1. Bayesian decision theory
Against the view that perceivers are passive consumers of sensory

input, Helmholtz (2005) maintained that we actively – though un-
consciously – infer the causes of this input. His theory was developed in
part to solve an underdetermination problem: the sensory input we
receive is impoverished in that it is consistent with having been caused
by many different possible states of the world around us. By actively
predicting the hidden causes of our sensory input, and testing these
predictions against further sensory input, we can come to more accu-
rately perceive the world.

A strand of research in perceptual psychology builds on this pro-
posal by invoking Bayesian decision theory (BDT), which provides a
mathematical framework for decision-making under uncertainty (Knill
& Richards, 1996). To solve the underdetermination problem, our
perceptual systems possess an internal model or models of the external
world, which generate hypotheses as to the worldly cause of the sensory
input.

In Bayesian inference, the agent – or some cognitive system therein
– is endowed with a hypothesis space, H, which is the totality of hy-
potheses for a given sensory cause. When a piece of sensory input, e, is
received, the subjective probability attached to each hypothesis, h ∈ H,
is updated according to Bayes's Rule.

= ×p(h e) p(h) p(e | h)
p(e)

where p(h) is the prior probability of hypothesis, h and p(e|h) is the
likelihood of observing e if the hypothesis were true. The denominator p
(e) is the marginal probability of evidence and is calculated as p
(e) = ∑h∈Hp(h,e). Bayesian updating involves the assignment of the
posterior probability, p(h∣e), as the new prior. It is this process of hy-
pothesis generation and manipulation that allows the agent or cognitive
system to quantify and update its uncertainties concerning the causes of
ambiguous sensory input.

In BDT, the agent or cognitive system uses Bayesian updating to
make optimal choices. That is, the agent can compute posteriors con-
cerning the likely states of the world, if, given the current sensory input,
e, the agent were to act on some policy, and then use these posteriors to
choose the policy that, in light of e, maximizes the expected utility (or
minimizes loss). Unfortunately, in practice, calculating p(e), which is
needed for inferring the posterior, is rather difficult and can quickly
become intractable for reasonably complex hypothesis spaces. The free
energy principle provides one method of approximating Bayesian in-
ference in the brain.

1.1.2. The free energy principle
Simply put, the Free Energy Principle states that all adaptive

changes in brain functioning, from those on evolutionary timescales to
those occurring in real-time, can be explained in relation to the task of
minimizing free energy (2009; see also Friston, Kilner, & Harrison,
2006). Free energy is a concept used in statistics to approximate in-
ference via variational Bayes. The free energy principle thus applies a
particular approximation of BDT, namely variational inference via free
energy minimization, to explain all adaptive behavior.

In order to see how this fits in with the discussion of Bayesian in-
ference thus far, consider that, due to the difficulty of computing p(e),
directly selecting the hypothesis that would maximize the posterior
probability is not a feasible objective. Progress could be made, how-
ever, if we were to make additional assumptions about the phenomenon
of interest. Let us assume, for example, that there is a family of dis-
tributions, Q, that (ideally) includes the true conditional distribution p
(h∣e) that interests us. Instead of searching over all possible posterior
distributions, we can then approximate p(h∣e) by finding a member of Q

that is, in some sense, closest to p(h∣e). Using the Kullback-Leibler di-
vergence as our measure of distance, our task is thus to find q∗ ∈ Q such
that

=q argmin D (q(h) p(h e))KL

where =D q h p h e q h p h e( ( ) ( )) [log ( )] [log ( )]KL , with both ex-
pectations defined with respect to q(h).

By itself, this does not spare us from the difficulty of computing p(e).
For, expanding the divergence term, it is clear that:

=
= +
= +

D q h p h e q h p h e
q h p he p e
q h p he p e

( ( ) ( )) [log ( )] [log ( )]
[log ( )] [log ( )] [log ( )]
[log ( )] [log ( )] log ( )

KL

The last step follows from the fact that logp(e) is constant with re-
spect to q(h). The challenge of computing p(e) thus remains, now in the
form of the task of calculating logp(e) – the negative of an information-
theoretic quantity known as surprise. Nonetheless, we can approach the
minimization task indirectly by re-formulating the problem in terms of
free energy, F—an information-theoretic measure that provides an
upper bound on surprise (MacKay, 1995). Specifically, we can calculate
F as

= D q h p h e p e( ( ) ( )) log ( )KLF

Notice that since log p(e) is constant with respect to q(h), mini-
mizing free energy is equivalent to minimizing the KL divergence (Blei,
Kucukelbir, & McAuliffe, 2017). This equivalence is useful because, in
cases where the objective of directly minimizing the divergence is in-
tractable, the equivalence offers an approximation strategy. For in such
cases, the objective of minimizing free energy—computable as

log q h
p h e

( )
( , ) —is something that we can aspired towards, if further as-

sumptions are made to simplify and restrict the problem space.
These simplifying assumptions might include restrictions on the

family of distributions, assumptions about the organization of the in-
ternal generative model, and so on (Gershman, 2019). For instance,
theorists employing BDT often posit that the model contains a number
of levels, organized hierarchically, with higher levels of the model
generating hypotheses about more abstract and slower external-world
regularities as compared to the lower levels (Lee & Mumford, 2003;
Rohe & Noppeney, 2015).

It is this hierarchical version of BDT (formulated in terms of free
energy) that PP adopts. According to this view, the communication
between the levels is limited, with each level communicating only with
the level directly above or below it in the hierarchy. Hypotheses at
higher levels of the hierarchy involve variables that lead to, or generate,
more specific hypotheses at lower levels. Thus, higher-level hypotheses
either directly or indirectly constrain the lower-level hypotheses,
though they are in turn revised in light of the success or failure of the
lower-level hypotheses. For example, a higher-level hypothesis might
concern an object's identity or overall shape, whereas a lower level
hypothesis might concern itself with specific characteristics of the ob-
ject, such as component shapes or textures.

With this hierarchy in place, the PP view is almost complete. The
last theoretical commitment of PP is predictive coding.

1.1.3. Predictive coding
Predictive coding (not to be confused with PP, which involves more

substantive commitments) is a strategy for minimizing information
transmission whereby the difference between a prediction and an input
is represented instead of representing the input directly, and only this
difference, or prediction error is transmitted (Elias, 1955). Proposed as
a computational model of visual processing, it has been successful in
accounting for extra-classical receptive field effects (Rao & Ballard,
1999). In human perceivers, retinal ganglion cells have been hypothe-
sized to engage in predictive coding, where neural circuits predict likely
image characteristics of nearby spatial locations based on local image
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characteristics, subtracting the predicted from actual values (Hosoya,
Baccus, & Meister, 2005).

While predictive coding needn't invoke BDT (Aitchison & Lengyel,
2017), the view that we focus on in this paper – PP – does (Clark, 2013,
2015; Friston, 2008, 2009; Hohwy, 2012, 2013). It posits the hier-
archical Bayesian model discussed in 1.1.2, with the added assumption
that when there is a mismatch between hypothesis and input what gets
relayed up the hierarchy to the level above it is merely prediction error
– the data that has not been successfully predicted by the hypothesis.
This in turn will lead to revisions of the predictions until prediction
error is minimized. Because only error is passed up to the next level of
the hierarchy, the system cuts down on the total amount of information
transmitted.

This conservation of cognitive energy is a strong motivation for PP
theorists to adopt predictive coding. Indeed, to say that we minimize
free energy is equivalent to saying – given some simplifying assump-
tions – that we minimize prediction error (Bogacz, 2017). This, despite
the fact that predictive coding and the free energy principle also come
apart: those who endorse predictive coding needn't take on board the
free energy principle, and the free energy principle may still prove
correct even if predictive coding is not the means by which neural
signalling works.

1.1.4. Summary
In summary, PP involves several theoretical commitments that go

beyond extant BDT models – chiefly an adherence to predictive coding
and to the free energy principle. Keeping these distinctions in mind is
important in evaluating evidence for PP. Bayesian modelling in per-
ceptual psychology has enjoyed considerable success in explaining
various perceptual phenomena (Brainard & Gazzaniga, 2009; Ernst,
2010; Mamassian, Landy, & Maloney, 2002; Stone, 2011; Weiss,
Simoncelli, & Adelson, 2002). However, this success does not vindicate
PP. Indeed, there is some difficulty with pinning down falsifiable hy-
potheses that are specific to PP (Gershman, 2019). There is nevertheless
some evidence for PP, predominantly in the perceptual domain

(Bendixen, SanMiguel, & Schröger, 2012; Hohwy, Roepstorff, & Friston,
2008; Huang & Rao, 2011; Moreno-Bote, Knill, & Pouget, 2011;
Stefanics, Kremláček, & Czigler, 2014; Summerfield & Koechlin, 2008;
Todorovic & de Lange, 2012; Todorovic, van Ede, Maris, & de Lange,
2011; Wacongne, Changeux, & Dehaene, 2012) but see (Aitchison &
Lengyel, 2017; Heeger, 2017). Even here, though, care must be taken
because much of this evidence is for hierarchical predictive coding, and
so should not be taken as a vindication in of itself for the free energy
principle component of PP.

It is also important to note that the explanatory ambitions of PP are
considerably broader than those of extant BDT models. While one might
support the claim that some aspects of cognition involve an approx-
imation of BDT, adopting the free energy principle offers PP theorists an
ambitious unifying operating principle for the brain, with all our sys-
tems understood as dedicated to minimizing free energy. The principle
– together with its other theoretical posits – purports to be able to
parsimoniously explain not only perception, but all psychological
phenomena. Much of the allure of such an account is thus that one need
only posit a single type of mechanism for all kinds of mental activity,
including action and attention (Hohwy, 2013, p.2).

1.2. Active inference

The PP theory of action, called ‘active inference,’ utilizes the same
tools as perceptual inference. An internal, hierarchically structured
generative model makes proprioceptive predictions updated according
to Bayes' rule, where prediction error is the only feedforward input.
Again, active inference is understood to be the minimization of pro-
prioceptive prediction error. However, while in the case of perceptual
inference we revise our predictions to fit the world, in the case of active
inference we change the world to fit with our predictions (Adams,
Shipp, & Friston, 2013; Clark, 2013, 2015; Friston, Daunizeau, Kilner, &
Kiebel, 2010; Hohwy, 2013). My desire to drink a glass of water will
involve generating a hypothesis that I am drinking the water, and
minimizing prediction error will involve acting to make it the case that I

Fig. 1. Conceptual representation of the Predictive Processing (PP) account for combined actions and sensory stimuli. PP postulates a hierarchically structured* model
that generates hypotheses concerning the hidden states of the world, with hypotheses at higher levels constraining those at lower levels. Higher levels of the
hierarchy correspond to hypotheses concerning more abstract and slower regularities, and lower levels correspond to sensory and motor-specific hypotheses (per-
ceptual and active inferences respectively; white arrows). Inconsistency between predictions and incoming sensory signals/motor expectation results in an error
signal (prediction error; black arrows) being fed ‘backwards’ through the system, which forces a revision to the higher-level hypotheses until prediction errors are
minimized. Prediction errors are weighted by their precision expectations (i.e., their reliability in representing the true state of the world; red/curved arrows), thus
PP prioritizes the allocation of attention to sensory information (prediction error) that is expected to be most precise. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
*While specific anatomical hierarchies associated with PP are not detailed here, several suggestions for its neural instantiation have been proposed. See Bastos et al.,
2012; Kanai, Komura, Shipp, & Friston, 2015; Shipp et al., 2013; Rauss & Pourtois, 2013.
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am indeed drinking the water (Adams et al., 2013; FitzGerald,
Schwartenbeck, Moutoussis, Dolan, & Friston, 2015; Friston et al.,
2016; Pezzulo, Rigoli, & Friston, 2015; Schwartenbeck et al., 2015;
Shipp, Adams, & Friston, 2013). Desires, on PP, are understood ex-
clusively in terms of hypotheses – they are no different from perceptual
hypotheses except in terms of their consequences.

Active and perceptual hypotheses are also intimately linked in
minimizing free energy via the minimization of prediction error
(Fig. 1). Perceptual inference provides information about the likely
state of the world to active inference, which is used to initiate action or
update proprioceptive predictions. Active inference in turn can be used
to help minimize perceptual prediction error, such as when we move
closer to the source of an ambiguous stimulus, or – as is our focus here –
attend to a particular region or stimulus.

The idea of using BDT to explain action – including the sorts of
dynamic action problems modelled in optimal control theory – is
nothing new (Körding, 2007; Körding & Wolpert, 2006; Rescorla,
2016). Many reinforcement learning models are also Bayesian, in that
prior information is expressed probabilistically and updated according
to the rules of Bayesian inference (Ghavamzadeh, Mannor, Pineau, &
Tamar, 2015). However, such models typically go beyond PP by in-
cluding cost functions in order to allow agents to select the optimal
action. Such cost functions are an additional theoretical posit not re-
ducible to the hypotheses and prediction errors that form the basis of
the PP's mental economy.

It is for this reason that PP theorists seek to demonstrate that active
inference can provide the same results as optimal control theory and
reinforcement learning without availing itself of such functions
(Friston, Daunizeau, & Kiebel, 2009; Friston, Samothrakis, & Montague,
2012; Solway & Botvinick, 2012). The sorts of agent behaviours typi-
cally explained by reinforcement learning – those of maximizing utility
or expected reward – are modelled using only active and perceptual
inference. Prior expectations about occupying different states replace
explicit representations of reward, and desired outcomes will be those
that are more likely given the agent's generative model, replacing cost
functions. Formally, the utility of an outcome is equated to its log prior
probability. On this account, it is no longer assumed that agents act to
maximize utility. They instead act to reduce prediction error (for a
discussion of how this account reconceptualizes the role of dopamine in
terms of precision expectations, see Colombo & Wright, 2017; Friston
et al., 2009; Friston et al., 2012; Schwartenbeck, FitzGerald, Mathys,
Dolan, & Friston, 2015). As we will see below, it is this attempt to do
without cost functions that causes problems for the PP account of at-
tention.

1.3. Attention as precision optimization

The PP account of attention provides a solution to the seemingly
incongruous finding that in some cases prediction error is not atte-
nuated even though the identity and location of the associated objects
are highly predictable (Chaumon, Drouet, & Tallon-Baudry, 2008).The
enhancement of prediction error signals in such circumstances is hy-
pothesized to be the result of attention (Clark, 2013; Itti & Baldi, 2005),
and is consistent with previous work demonstrating that attentional
focus increases neural activation for relevant stimuli/locations in sen-
sory cortices (Boynton, 2009; Brefczynski & DeYoe, 1999; Corbetta,
Miezin, Dobmeyer, Shulman, & Petersen, 1990; Gandhi, Heeger, &
Boynton, 1999; Martínez et al., 1999; Reynolds & Heeger, 2009;
Somers, Dale, Seiffert, & Tootell, 1999). A number of neuroscientists in
recent years have adopted the PP theory in some capacity to elucidate
mechanisms of attentional allocation (Chennu et al., 2013; Den Ouden,
Kok, & De Lange, 2012; Feldman & Friston, 2010; Itti & Baldi, 2005;
Jiang, Summerfield, & Egner, 2013; Kok, Rahnev, Jehee, Lau, & de
Lange, 2012).

Descriptions of attention by PP theory, originally outlined by
Feldman and Friston (2010) and defended by Hohwy (2012, 2013) and

Clark (2013, 2015) state that attention is the optimization of the pre-
cision of prediction errors. In mathematical terms, precision is the in-
verse variance of a signal. Informally, precision can be thought of as a
measure of the signal's reliability - how likely it is that the prediction
error generated is the result of signal, as opposed to noise. However,
precision will be context-dependent - in two different environmental
contexts the prediction error generated by the same prediction may
differ, because noise levels in the environment are apt to change. So just
as we must learn to make perceptual predictions, so too must we make
predictions about the likely precision of their corresponding prediction
errors. Precision expectations are subjective estimates of how noisy or
precise we expect the prediction error signal to be in a given context.

The development of precision expectations in vivo appears to be
driven by learning statistical regularities about noise levels in the en-
vironment. For example, we learn that our vision (the prediction errors
generated by our visual systems) is relatively imprecise in low lighting,
or that our hearing is imprecise in environments with lots of back-
ground noise. Optimizing precision is the process of guiding hypothesis
revision by directing processing resources towards the prediction errors
with higher expected precisions – we attend to what is expected to be
consistently most informative, and this information is used to pre-
ferentially revise our perceptual hypotheses. Such a practice allows us
to avoid the potentially disastrous consequences of overfitting our hy-
potheses on the basis of noise-induced prediction errors.

The PP theory of attention is thus committed to the claim that high
precision expectations are driving attention in all its instances. To date,
the primary focus has been on employing the PP theory of attention to
explain aspects of a canonical dichotomy that parses attention into
‘endogenous’ and ‘exogenous’ processes (Posner, 1980). Exogenous at-
tention has been defined as an automatic orienting response to an en-
vironmental stimulus (Posner, 1980). Loud noises and bright flashes are
paradigmatic examples of stimuli that ‘capture’ our attention, regard-
less of our desires or current activity. Within PP theory, this attentional
capture is explained by a general standing expectation that large,
abrupt prediction errors are typically highly precise (Clark, 2013,
2015;Feldman & Friston, 2010 ; Hohwy, 2012, 2013).

By contrast, the construct of endogenous attention involves the
agent at least to some degree willfully directing resources towards some
aspect of the environment, usually for a purpose or task (e.g. Hohwy,
2012). In empirical studies of the PP theory of attention, following suit
with empirical studies of attention more generally, endogenous atten-
tion is often operationalized as task-relevance (Chennu et al., 2013;
Jiang et al., 2013; Kok et al., 2012). Within PP theory, endogenous
attention is explained by the learning of contextually sensitive regula-
rities. For example, in the ‘Posner paradigm’ (Posner, 1980) – a cueing
task designed to investigate how covert spatial attention can facilitate
the detection of stimuli – one learns the regularity that arrows that
point in a given direction will usually indicate that there is, or will be, a
stimulus in that region. Over repeated exposure to this pairing, one
comes to expect prediction errors generated for hypotheses indexed to a
given spatial region to be highly precise when an arrow points to that
region (Feldman & Friston, 2010; Hohwy, 2012, 2013). When the task
is to detect a stimulus that will appear on the screen, one exploits this
regularity to perform the task more efficiently.

Though less discussed than exogenous or endogenous attention,
some PP theorists have also focused on ‘volitional’ or ‘voluntary’ at-
tention – where attention is allocated on the basis of a conscious de-
cision to do so (Hohwy, 2013, pp. 197–199). The construct of voluntary
attention is meant to capture the phenomenon whereby we can attend
to things simply because we decide to, without any external impetus.
For example, if you were to decide on a whim that you want to attend to
the fingernail on your pinkie finger, you could do so without any
trouble. This form of attention is narrower than endogenous attention,
though perhaps a subtype of it. While both endogenous and voluntary
attention involve some degree of willful action on the part of the agent,
endogenous attention needn't involve a conscious decision to attend.
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Moreover, in the case of endogenous attention (construed as excluding
volitional attention) the cue is at least partly external to the agent,
whereas in the case of volitional attention the cue is wholly internal; the
decision to attend to the cue is itself what serves to direct attention. The
relevant learned regularity will be that our decisions to attend are
highly correlated with the appearance of high precision targets
(Hohwy, 2013).

2. The challenge from affect-biased attention

PP's focus on explaining endogenous and exogenous attention leaves
out important attentional phenomena. Revisiting the case of the
Doberman, it quickly becomes apparent that our increased attention to
the yard is not accommodated by any of the explanations described
above, yet this type of event can (and often ought to) capture our at-
tention. It is not a case of exogenous attention as PP theory con-
ceptualizes it, as there is nothing in the environment beyond the initial
encounter that generates a large abrupt prediction error to capture our
attention. Attention is allocated despite the lack of any such occurrence
– we attend pre-emptively, despite the lack of any loud noises or sudden
movement. Neither is it a case of endogenous attention as con-
ceptualized by the PP theory. Given that it is unlikely the dog will be in
the yard (recall its typical absence), the mere presence of the house or
the fence does not serve to reliably indicate the presence of the dog.
There is no learned statistical regularity here that can explain our at-
tention. While the chance of the dog being present is higher in the yard
than it is, say, in the supermarket or at the bank, it nevertheless remains
quite low overall. The expected precision is thus also still relatively low.

Voluntary attention might seem at first to provide a solution – we
desire not to be startled, so we make a conscious decision to attend to
the fence in order to ensure there is no dog behind it. No external cue
need be present in this case. However, there are two points that speak
against this solution. First, it faces a similar problem as that of en-
dogenous attention. We should not have a high precision expectation
that our decision to attend will lead to the sighting of the dog, given the
infrequency with which it is actually in the yard. Second, following the
arguments of Ransom, Fazelpour, and Mole (2017), PP theory does not
provide a coherent account of voluntary attention. Any increased pre-
cision in the sensory input will be merely a consequence of attending,
rather than what is driving attention. This is because, while it is true
that attending to something will, by a sort of ‘self-fulfilling prophecy,’
increase the precision of the prediction error associated with that hy-
pothesis, it cannot be a precision expectation that is driving the decision
to attend to that particular object. We will have equivalent precision
expectations for all objects; no matter if we attend to this or that object,
the precision will be enhanced in either case. So precision expectations
cannot be what is responsible for driving voluntary attention (c.f. Clark,
2017). There is therefore no way to explain the selective orientation of
attention in terms of precision expectations, given the current PP con-
ceptualization of attention.

Part of the difficulty PP faces is that the classical separation of
‘exogenous’ and ‘endogenous’ attention is almost certainly too narrow a
view of the operations of attention (Awh, Belopolsky, & Theeuwes,
2012; Todd & Manaligod, 2018). Specifically, affect-biased attention
cannot be neatly classified into either category. Affect-biased attention
is attention to stimuli that are affectively salient, i.e. stimuli that stand
out because of their associations with reward or punishment (Markovic,
Anderson, & Todd, 2014; Mather & Sutherland, 2011; Rolls, 2000;
Todd, Cunningham, Anderson, & Thompson, 2012; Todd & Manaligod,
2018; Vuilleumier, 2015). It is not comfortably categorized as a form of
exogenous attention because affectively salient objects, like other
sources of attentional guidance driven by experience, can capture at-
tention even when they are not physically salient (Anderson, 2013;
Anderson, Laurent, & Yantis, 2011, 2012; Anderson & Yantis, 2013;
Awh et al., 2012; Della Libera & Chelazzi, 2009; Hickey, Chelazzi, &
Theeuwes, 2010; Libera & Chelazzi, 2006; Niu, Todd, & Anderson,

2012; Niu, Todd, Kyan, & Anderson, 2012; Shomstein & Johnson,
2013). Affectively salient objects also capture attention when they are
not task relevant (Awh et al., 2012; Todd et al., 2012), preventing
straightforward assimilation to PP's treatment of endogenous attention.
It thus serves as an important area of investigation for those interested
in the PP account of attention.

In addition, the Doberman scenario may be best described as in-
volving affect-biased attention – we attend to the fence because it is
affectively salient to us, regardless of whether we expect the dog to be
there. In this case, it seems that a signal with a low chance of containing
highly important information should be attended, though it is not ex-
pected to be precise on the PP theory. It also suggests the need to factor
in the cost of false negatives and false positives, such that expected
precisions can be weighted according to their cost. In an evolutionary
context, there is often a significantly higher cost to false negatives
compared to false positives – misidentifying a potentially dangerous
object or situation as safe may have dire consequences, while the in-
verse is rather benign, though there are boundaries on this (Stephens,
2001).

The question is then whether factors such as the cost of getting it
wrong can be accurately captured by precision expectations. We remain
unconvinced that they can in all cases. As discussed in Section 1.2, PP
theorists hold that cost functions can be eliminated in their framework
by simply redescribing the utility of an outcome as its log prior prob-
ability. In cases where outcomes that have high utility also have high
probabilities, then this redescription is not problematic. However, PP
cannot accommodate cases where the two come apart. The example of
affect-biased attention we have discussed here is one such case.

As defined in PP theory, precision expectations pertain to estimating
not the cost of error, but the level of confidence that the sensory input
itself is likely to be signal rather than noise. Estimating precision and
the cost of getting things wrong diverge in many instances. Consider for
example walking through the tall grass of the Ugandan savannah on a
very windy day. The cost of mistaking the cause of a rustle in the grass
as wind rather than a lion is quite high, yet the probability that the
movement is caused by the wind is much higher than that it is caused
by the lion. The rustling movement will therefore be expected to be
relatively imprecise with respect to the hypothesis that it is caused by a
lion. In cases such as these, precision expectations do not optimally
drive attention in a manner required for survival (and presumably go
against one's preference to remain in one piece).

The challenge for the PP theory that arises from the Doberman case,
and from affect-biased attention more generally, is to accommodate
these additional attentional influences in terms internal to the PP fra-
mework. Someone who endorses BDT might be puzzled at this point –
why not just embrace cost functions so as to be able to readily ac-
commodate the phenomenon? Of course, supporters of BDT must pro-
vide testable models demonstrating that cost functions do indeed ad-
dress the issue. While a full discussion of how BDT might do so is
beyond the scope of this paper given that there are many ways in which
such models might be elaborated, and so evaluation will depend on
these details, we suspect that a promising avenue will be to look to
existing BDT models of sensorimotor control that posit two separate
cost functions: error-based and reinforcement-based (Cashaback,
McGregor, Mohatarem, & Gribble, 2017). Though attention is not per-
fectly understood as a form of sensorimotor control because some shifts
of attention can be covert, the sensorimotor framework nevertheless
provides general guidance for positing two different cost functions di-
recting attentional processes. The first pertains to how precise we ex-
pect perceptual prediction errors to be, as hypothesized by PP theorists,
where the cost function may be understood as minimizing prediction
error (though, as observed by PP theorists, cost functions in this sense
are theoretically unnecessary and can be fully assimilated as described
above). The second pertains to how rewarding we expect a given per-
ceptual outcome to be, where the cost function can be understood along
traditional BDT lines as maximizing expected utility. This is where a
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solution to the Doberman problem can be implemented, as expected
utility is defined as:

E[Utility] p(outcome | action)U(outcome)possible
outcomes

Here p(outcome|action) is the probability of a given outcome given
an action, which in this case, is the probability of the dog being present
given the act of attending to the fence. U(outcome) is the utility or value
that is associated with the outcome (or one might instead adopt pro-
spect theory where value is instead assigned to prospective gains or
losses (Tversky & Kahneman, 1979). As is evident from the equation,
the expected utility of an action can still be relatively high when the
probability of a given outcome is low, if the value of the outcome is
high enough. We discuss some further work separating expected pre-
cision from expected utility, and highlight some directions for future
research, in Section 5.

Regardless of the success of BDT at accommodating affect-biased
attention, PP rejects cost functions because it purports to provide a
unified and parsimonious account of mental functioning as minimizing
free energy, not maximizing utility (see Section 1.1.4). To posit me-
chanisms beyond this framework would therefore invalidate what
Colombo and Wright (2017) term the ‘grand unified theory’ that the
main advocates of PP adhere to. It therefore remains to be shown
whether and how affect-biased attention can be accommodated with
only the internal tools at its disposition. In what follows we review the
state of the art of empirical evidence for affect-biased attention, how PP
has sought to accommodate affect so far using the theoretical tools it
has at its disposal, and argue that these accounts do not resolve the
challenge from affect-biased attention.

3. Affect and reward biases in attention

A large body of research demonstrates that affectively salient sti-
muli capture or guide attention (for a review see Pourtois, Schettino, &
Vuilleumier, 2013). Affectively salient stimuli receive enhanced neural
processing resources within sensory pathways (Lindquist, Wager,
Kober, Bliss-Moreau, & Barrett, 2012) including across various regions
in the visual (Critchley et al., 2000; Damaraju, Huang, Barrett, &
Pessoa, 2009; Morris et al., 1998; Padmala & Pessoa, 2008; Phan,
Wager, Taylor, & Liberzon, 2002; Vuilleumier, Armony, Driver, &
Dolan, 2001) and auditory cortices (Ethofer et al., 2006; Ethofer et al.,
2012; Fecteau, Belin, Joanette, & Armony, 2007; Grandjean et al.,
2005; Kryklywy, Macpherson, Greening, & Mitchell, 2013). Behavio-
rally, studies have demonstrated enhanced detection for emotional vs.
neutral stimuli using paradigms such as visual search (Eastwood,
Smilek, & Merikle, 2001; Kryklywy & Mitchell, 2014; Öhman, Flykt, &
Esteves, 2001), spatial orienting (Armony & Dolan, 2002; Pourtois,
Grandjean, Sander, & Vuilleumier, 2004) and attentional blink tasks
(Anderson, 2005; De Martino, Kalisch, Rees, & Dolan, 2009; Lee, Todd,
Gardhouse, Levine, & Anderson, 2013; McHugo, Olatunji, & Zald,
2013). Notably, such attentional biases do not need to be developed
through extended life experience, but can be learned through con-
ditioning. For example, appetitive conditioning studies demonstrate
continued attentional priority allocated to stimulus features formerly
associated with reward (Anderson et al., 2011; Chelazzi et al., 2014), an
effect that endures across time regardless of continued reward pairing
(e.g. Chelazzi et al., 2014).

Studies using EEG or MEG methods have shown enhanced event-
related potentials (ERPs) for emotional stimuli at both early and late
latencies following stimulus onset, including increases in C1 amplitude,
an early visual cortical response reflecting low-level visual features,
(Pourtois et al., 2004; Rauss, Schwartz, & Pourtois, 2011; Rossi &
Pourtois, 2014; Stolarova, Keil, & Moratti, 2006; West, Anderson,
Ferber, & Pratt, 2011) and increases in P1 amplitude, an index of ex-
trastriate cortex activity typically enhanced for attended vs. unattended
stimuli (Batty & Taylor, 2003; Pourtois et al., 2004; Pourtois, Dan,

Grandjean, Sander, & Vuilleumier, 2005; Rotshtein et al., 2010). En-
hanced processing in the visual cortex is also demonstrated by studies
of steady-state visual evoked potentials (SSVEPs), where oscillatory
neural activity frequency matched to that of an attended flickering
stimulus is augmented for emotional imagery (Keil, Moratti, Sabatinelli,
Bradley, & Lang, 2005; Müller, Andersen, & Keil, 2007; Wieser,
McTeague, & Keil, 2012). Interestingly, while the enhanced ERPs for
emotional stimuli reflect those of traditional endogenous and exo-
genous attention, fMRI and EEG research indicates that the sources of
these effects are partially distinct from the regions typically noted to
mediate endogenous attention and exogenous attention (fronto-
temporal and temporoparietal respectively) (Corbetta & Shulman,
2002; Kastner & Ungerleider, 2001; Serences & Yantis, 2007). Notably,
affect-biased attention recruits amygdala and midbrain circuitry not
frequently implicated in other forms of attentional control (Todd &
Manaligod, 2018). The amygdala has strong bidirectional connections
with sensory areas (Amaral, Behniea, & Kelly, 2003; Catani, Jones,
Donato, & Ffytche, 2003; Gschwind, Pourtois, Schwartz, Van De Ville, &
Vuilleumier, 2012), and has been shown to play a role in guiding at-
tention to rewarding (Peck, Lau, & Salzman, 2013) as well as punishing
stimuli (Peck & Salzman, 2014; Todd & Manaligod, 2018; Vuilleumier,
Richardson, Armony, Driver, & Dolan, 2004) see also (Anderson &
Phelps, 2001; Markovic et al., 2014; Pourtois et al., 2013). The locus
coeruleus-norepinephrine (LC-NE) system in the midbrain biases at-
tention to affectively salient stimuli by modulating visual cortical ac-
tivity both directly and indirectly via the amygdala and ventromedial
prefrontal cortex (vmPFC) (Aston-Jones & Cohen, 2005; Markovic et al.,
2014; Mather, Clewett, Sakaki, & Harley, 2016).

While past research has disembedded affect-biased attention from
both physical salience and task-based attention, it has not directly
considered the role of precision expectations. It remains an open
question how affect-biased attention interacts or competes with the
sorts of precision expectations utilized during straightforward cases of
endogenous and exogenous attention.

4. Preliminary attempts to incorporate affect into the PP
framework

Here we review and evaluate three prominent attempts to provide a
general account of our affective experience in the PP framework. We
argue that none can accommodate affect-biased attention.

4.1. Embodied inference

Miller and Clark (2018) propose that precision expectations are
extensively mediated by sub-cortical pathways, and they provide a re-
view of the role of sub-cortical processing in modulating precision ex-
pectations and incorporating affect. For example, they follow (Pessoa,
2014) in viewing the medial pulvinar as amplifying weak but biologi-
cally valuable signals and so influencing behavior. Their picture is one
in which action, affect, perception, and cognition are ‘happily en-
tangled’ thanks to extensive thalamocortical loops, where “these sub-
cortical loops help influence precision estimations in ways that reflect
bodily states and unfolding actions, allowing value (to the organism)
and affect (relating to interoceptive bodily states) to exert a continuous
influence on high-level predictions” (Miller & Clark, 2018, p. 2572).

While Miller and Clark claim that such a story is consistent with PP
(cf. Colombo & Wright, 2017), as far as we can see the evidence that
they marshall in support of their thesis can actually be used to raise the
same objections we have raised here. The fact that regions known to
play a role in affective salience are also implicated in gain modulation
does nothing to suggest that this modulation is best understood in terms
of precision expectations. Precision expectations are second order hy-
potheses that provide a measure of our confidence in our first order
predictions. Affect-biased attention continues to be problematic insofar
as how significant an object is can differ from how confident we are that
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the object is indeed present in our visual field. Precision expectations
and affective salience can exert opposite influences on gain modulation.

What Miller and Clark need is a theoretical account of how affective
predictions themselves generate prediction errors with variable preci-
sions, but it is not easy to do this using only the tools provided by PP
theory. Suppose that we predict that when a light appears on a screen
and we press a button we will receive a reward – this is a first order
prediction. We can also make predictions about the precision with
which that relationship holds. For example, if pressing the button leads
to reward 90% of the time, then we may form high precision expecta-
tions. If it only leads to reward 1% of the time then we may form low
precision expectations. These low precision expectations would then
lead to decreased attention to the task, according to PP. Accurate per-
formance would likely slip, especially if the task is relatively difficult.
But now suppose that the reward is $1000. This large benefit would
plausibly cause us to increase attention to the task – the possibility of
getting a large reward, however slight, is enough of a motivator to at-
tend. Precision expectations regarding affectively salient stimuli will
then suffer from the same original issue raised above: we attend in part
on the basis of the cost of getting it wrong or right, not just on the basis
of expected precisions. What we need is of course just the concept of
expected utility or value. But then it is not expected precision alone that
drives attention – costs and benefits also matter.

4.2. Interoceptive inference

Interoception is the ability to perceive internal bodily states and
changes. A PP account of interoception, proposed by Seth (2013),
suggests that we infer the causes of our interoceptive states in much the
same way that we infer the causes of exteroceptive perceptual states
(see also Seth, 2014; Seth & Friston, 2016; Seth, Suzuki, & Critchley,
2012). On this account, emotions are the product of top down predic-
tions of interoceptive responses to external stimuli, which interact with
bottom up interoceptive prediction errors. Interoceptive prediction er-
rors can be minimized in one of two ways. First, analogously to per-
ceptual inference, by revising predictions in light of prediction errors.
For example, we may come to realize that we are feeling unexpectedly
happy thanks to awareness of unpredicted interoceptive signals.
Second, analogously to active inference, prediction errors can be
minimized by changing the input so that it conforms to the hypothesis.
For example, a drop in blood sugar levels may trigger the body to re-
establish homeostasis by releasing additional glucose, or by prompting
the agent to eat lunch.

This account thus makes room for affective or interoceptive pre-
dictions, which in some cases will be tied to their perceptual causes –
we predict that the appearance of a loved one will cause interoceptive
changes that amount to happiness, or, returning to our own example,
that the Doberman's appearance will cause us to be startled and afraid.
Precision expectations would then concern how likely the prediction
error generated by actual interoceptive states is the product of noise.
For example, one's heart rate might coincidentally rise for a reason
unrelated to the presumed cause – such as it might if one ingested a
large amount of caffeine – generating a prediction error that may be
used to wrongly revise one's hypothesis that one is only mildly afraid of
dogs (for an empirical investigation along these lines see Allen et al.,
2016). Malfunctioning of the precision of interoceptive prediction er-
rors has been hypothesized to play a role in chronic anxiety (Cornwell,
Garrido, Overstreet, Pine, & Grillon, 2017; Paulus & Stein, 2006, 2010),
as well as depersonalization and derealization disorders, where subjects
feel persistently disembodied or as if the world around them is unreal
(Seth et al., 2012); for other pathological cases hypothesized to involve
the malfunctioning of the precision of prediction errors, see (Frith,
2012) (schizophrenia); (Adams et al., 2013) (schizophrenia & Parkin-
sonism); (Lawson, Rees, & Friston, 2014) (autism); (Seth & Friston,
2016) (autism, depression)).

What remains unclear is how such precision expectations might

guide attention, and whether cases such as that of the Doberman can be
accommodated. Given that our interoceptive hypotheses will be tied to
their perceptual causes, it seems that in situations where some event is
unlikely to occur, we should also not expect any interoceptive changes,
nor should we expect high precision from any interoceptive changes
that do occur. In cases where it is unlikely that the dog will appear there
is no reason, on this account as it stands, to preemptively attend to the
fence.

4.3. Emotional valence as the rate of change in free energy

In an account complementary to that of interoceptive inference
discussed above, Joffily and Coricelli (2013) propose that emotional
valence serves as a proxy for precision expectations. On their account,
emotional valence is construed as the positive or negative character of
emotion. Joffily & Coricelli propose that emotional valence – and a
limited number of ‘basic’ emotions – be identified with the negative rate
of change of free energy, where the minimization of free energy is
roughly approximated by the minimization of prediction error under
simplifying Gaussian assumptions.

On this account, emotional valence need not be explicitly re-
presented by the organism. Rather, it is a consequence of how effec-
tively free energy is minimized over time. While their main focus is on
the valence component of emotions, they also provide an analysis of
several emotions they term ‘basic’: happiness/unhappiness; hope/fear;
relief/disappointment. For example, when free energy is decreasing
(prediction error is being minimized) faster and faster over time, this
produces the feeling of hope, insofar as the agent expects to be in a state
of lower free energy in the near future. When free energy is decreasing
more slowly over time the agent is said to be happy that her current
state is one of lower free energy than the previous state. However, when
free energy is increasing (accelerating) over time, this produces the
feeling of fear, insofar as the agent expects to be in a state of higher free
energy in the near future.

The connection with precision expectations (what Joffily & Coricelli
term ‘estimation uncertainty’) is that instead of making direct estima-
tions of the precision of one's hypotheses, the organism instead takes
the increase in free energy as an indicator that it is overconfident in its
hypotheses, and this results in an increased weighting of the prediction
error. Likewise, when free energy is decreasing faster over time, then
this will result in a decreased weighting of the prediction error.
Intuitively, if our hypotheses are doing a poor job and producing lots of
unresolved prediction error, then this suggests we ought to sub-
stantially revise them. On this account, valence serves as a sort of proxy
for precision expectations.

Though the authors do not address attention, this account – when
combined with the PP treatment of attention – predicts that negative
valence will lead to enhanced attention, because it leads to enhanced
gain on prediction error, and positive valence will lead to diminished
attention. This account is almost certainly too simple insofar as we can
and do attend to positively valenced events and objects (such as the
$1000 reward example in Section 4.1). Additionally – putting the at-
tentional gloss aside – it is not clear that the original account can ac-
commodate the asymmetric weighting of gains and losses. Tversky &
Kahneman's (1979) loss aversion principle states that agents assign a
heavier weight to potential losses or penalties than to potential gains or
rewards of equal size. In such cases, a loss of a given amount leads to a
more extreme emotional response than an equal-sized gain (McGraw,
Larsen, Kahneman, & Schkade, 2010). This is potentially problematic
because there is no element of the account as it currently stands that
predicts this asymmetry. Rather, the account predicts that free energy
increasing or decreasing at the same rate from the same initial starting
point should take on, respectively, negative and positive valences of the
same magnitude, where magnitude might be thought to map on to
another variable commonly thought to be partly constitutive of the
emotions: arousal.

M. Ransom, et al. Cognition 203 (2020) 104370

7



Readers may also worry that the account does not map onto the
emotions identified by Joffily & Coricelli as ‘basic’. For example, while
fear is related to the prospect of visiting a state of increased free energy
in the near future, there are plausibly cases where we fear things that
are not associated with increases in free energy. There is no uncertainty
as to whether a shot at the doctor's office will hurt, or whether we will
actually receive the shot when we know it is coming. If an event is well-
predicted then it seems that we ought to experience some form of po-
sitive emotion, given that free energy is decreasing. Joffilly & Coricelli
suggest that this sort of issue may be resolved by appealing to different
levels of the hierarchical generative model: while free energy may be
decreasing or stationary at some levels, it may be increasing in others.
This explanation works well for the example they discuss, that of a
pedestrian getting hit by a bicycle. While the pedestrian expects to get
hit in this particular circumstance – she sees the cyclist barreling to-
wards her and realizes they are on a collision course – she does not
expect to be injured while crossing the street, and it is this violation of
expectations that produces the negative valence. Whether this account
generalizes to the case of the shot seems questionable, as in this case
one presumably also has an expectation that one will likely receive a
shot when one goes to the doctor's office. Perhaps we might posit a
more general (though somewhat ad hoc) standing expectation not to be
injured, and posit that this is where the violation of expectations occurs.

Putting these problems aside, the larger issue relevant to our pur-
poses is that the account does not provide a clear resolution to cases
such as the Doberman problem. In addition to the basic emotions,
Joffily & Coricelli also propose a distinction between fear and anxiety in
terms of the presence or absence of the stimulus in the environment
(2013, p.12). Fear – in addition to involving an increase in free energy
as outlined above – pertains to perceiving threats that are present in the
external environment. In the case of anxiety the environment is per-
ceived as normal, yet the rate of free energy will increase at higher
levels of the hierarchy due to abstract causes we associate with our
sensations, producing anxiety.

Based on this analysis, the relevant emotion in the Doberman case is
anxiety, given that the Doberman is not required to be present in order
for one to direct one's attention to the fence. However, what is needed
to complete the account is that the conditions for negative valence must
themselves obtain in order to produce the anxiety in the first place; a
level of the hierarchy at which prediction error is increasing. We do not
expect the dog to be there, so this is a non-starter. Perhaps the mere
presence of the fence – due to an association with the dog – causes a
change in our interoceptive sensations such as heart rate and so on.
Then issue is that our interoceptive sensations are well-predicted (we
predict our heart rate will rise at the sight of the fence). Therefore, this
should not lead to a failure to minimize prediction error – our sensa-
tions will change exactly as predicted. So there should be no accel-
eration in the rate of free energy, no anxiety, and no increased atten-
tion. The account provided will thus do better at explaining attention to
unexpected sources of value or disvalue than expected sources of value
or disvalue. When we walk by the house for the first time and the dog
rushes the fence, then this unexpected change in our rate of prediction
error minimization can cause both negative valence and increased at-
tention. But the account does not accommodate the sorts of preemptive
attentional behaviours discussed here.

5. Directions for future research

In summary, even though none of the approaches reviewed above
can be straightforwardly applied to affect-biased attention or our pro-
blem case, they may nevertheless constitute promising directions of
theoretical pursuit when understood in the context of a weakened
version of the PP theory that does not aspire to the status of a grand
unified theory of mental functioning.

While we remain skeptical of grand unified theories, we are hopeful
that a weakened version of PP may emerge whereby prediction works

alongside other mechanisms, perhaps drawing on resources in BDT.
BDT offers a treatment of agential value in terms of utility functions,
and guidelines for integrating utility functions with prior probabilities
in order to optimize decision making (Körding, 2007). Though these
tools have not yet been applied to the phenomenon of affect-biased
attention, there is reason to suspect that they can adequately capture
such attentional patterns so long as the subjective utilities are quanti-
fied in the right way. We recognize that this diminishes the attraction of
the PP for some. Nevertheless, we think that this emerging account of
the mind has much to offer. Bayesian perceptual modelling has proven
remarkably successful at accounting for visual phenomena, and to some
degree may also explain attentional phenomena. Though evidence for
Bayesian perceptual modelling is not evidence for PP, and PP makes
distinct theoretical commitments (see Section 1), there is nevertheless
enough of a family resemblance such that empirical work using a PP
paradigm can make a contribution to the BDT research program.

To date, empirical studies of attention and PP have typically held
precision expectations static, with the attentional cue retaining a con-
stant validity across trials (Chennu et al., 2013; Jiang et al., 2013; Kok
et al., 2012). However, investigating the potential causal influence of
expected precision on attentional behavior requires manipulating cue
validity and examining the effect of this manipulation on attentional
behavior. To truly accumulate empirical evidence for (or against) PP
models of attention, studies must begin to explicitly alter such ex-
pectations, while keeping other factors such as the content of ex-
pectations constant. This will allow researchers to further investigate
what is particular to PP compared to alternative BDT models, namely,
the total dependence of different aspects of attentional selectivity on
differential gradations of expected precisions.

Wyart, Nobre, and Summerfield (2012) have developed a paradigm
that appears promising for manipulating each variable independently
(see also Vossel, Geng, & Fink, 2014). Here, the main task of the ex-
periment was to report whether a Gabor patch was present or absent in
one of two presented locations, with the probe only appearing post-
stimulus, the specific location indicated on a trial by trial basis. By
providing cues about the block-level, location specific probability of the
Gabor patch presence, and the trial level probability of the location to
be probed, they were able to delineate the influences of signal prob-
ability and task relevance respectfully. Critically, this resulted in pat-
terns of visual sensitivity that could differentiate between the impact of
precision expectation and prediction error. This approach represents an
exceptionally promising avenue forward to help isolate affect-biased
attention as well.

In the case of affect-biased attention, then, assessing the explanatory
adequacy of the PP theory of attention requires separating the effects of
the associated reward on stimulus processing from those of expected
precision. This could be achieved by distinct manipulations on the
value of the reward associated with an object, on the one hand, and the
validity of the cue indicating the presence of that object on the other.
Manipulating these two variables independently should help us gain
further understanding of how the two interact. For example, van
Steenbergen et al. (2017) show that, at least with respect to certain
classes of motor tasks, increasing reward increases the precision of
perceptual representations in the task-relevant areas (extrastriate body
area and fusiform face area). This would seem to suggest that reward
serves as an independent modulator of gain, as we have argued above:
precision expectations and affective salience are dissociable. However,
the interplay between the two is far from clear, and a fascinating op-
portunity to understand exactly how the PP theory must be supple-
mented in order to achieve explanatory adequacy.

6. Conclusion

In this paper we have argued that affect-biased attention cannot be
assimiliated to the PP theory of attention without significantly weak-
ening that theory, perhaps by drawing on tools from BDT such as cost
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functions. Affect-biased attention is not straightforwardly explained by
the PP treatment of exogenous or endogenous attention, and it provides
cases where precision expectations will be low but attention never-
theless ought to be directed to an object because of potential rewards or
punishments. This suggests that in order to accommodate affect, PP
theory must relinquish its claim that it provides a complete explanation
of brain functioning.

We have reviewed three prominent attempts to account for affect
within the PP framework. First, Miller and Clark (2018) highlight the
role of the medial pulvinar in modulating the gain on weak signals that
pertain to affectively significant stimuli. We argue that this is consistent
with our claim that such gain modulation is not best understood in
terms of precision expectations, and does nothing to resolve the chal-
lenge from affect-biased attention. Second, Seth (2013) proposes that
we infer the causes of our internal sensations in much the same way
that we infer the causes of our exteroceptive sensations, and that in-
teroceptive inference can be identified with emotion. We argue that
since our interoceptive hypotheses will be tied to their perceptual
causes, cases of affectively salient yet unlikely events should not pro-
duce interoceptive changes, nor should we expect high precision from
any interoceptive changes that do occur. Third, Joffily and Coricelli
(2013) construe emotional valence as the negative rate of change of free
energy, and thus a determinant of precision expectations. We argue that
while the account can explain attention to unexpected sources of value
or disvalue, it cannot explain our attention to expected sources of value
or disvalue (that is, to affectively salient objects).

Finally, we discuss directions for future research on affect-biased
attention and PP. Understanding how precision expectations and af-
fective salience interact is critical to assessing the explanatory reach of
PP theory. While BDT can in principle answer the challenge we have
issued to PP here, the field would do well to provide some actual
models of the neglected phenomenon.
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