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Emotionally  arousing  events  reach  awareness  more  easily  than  more  mundane  events.
Emotionally  salient  events  are  also  perceived  and remembered  more  vividly.
We  present  the  Biased  Attention  via  Norepinephrine  (BANE)  model  of  affect-biased  attention  (ABA).
BANE  draws  on genetic,  neuromodulatory,  neural  and  behavioural  evidence  to account  for ABA.
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a  b  s  t  r  a  c  t

Emotionally  arousing  events  reach  awareness  more  easily  and  evoke  greater  visual  cortex  activation  than
more mundane  events.  Recent  studies  have shown  that  they  are  also  perceived  more  vividly  and  that
emotionally  enhanced  perceptual  vividness  predicts  memory  vividness.  We  propose  that  affect-biased
attention  (ABA)  – selective  attention  to emotionally  salient  events  –  is  an  endogenous  attentional  system
tuned  by  an  individual’s  history  of  reward  and  punishment.  We  present  the  Biased  Attention  via Nore-
pinephrine  (BANE)  model,  which  unifies  genetic,  neuromodulatory,  neural  and  behavioural  evidence  to
account  for  ABA.  We  review  evidence  supporting  BANE’s  proposal  that  a  key  mechanism  of  ABA is  locus
coeruleus–norepinephrine  (LC–NE)  activity,  which  interacts  with  activity  in  hubs  of affective  salience  net-
works  to modulate  visual  cortex  activation  and  heighten  the  subjective  vividness  of  emotionally  salient

stimuli. We  further  review  literature  on  biased  competition  and  look  at initial  evidence  for  its potential
as  a neural  mechanism  behind  ABA.  We  also  review  evidence  supporting  the role  of the  LC–NE  system
as  a driving  force  of  ABA.  Finally,  we  review  individual  differences  in  ABA  and  memory  including  differ-
ences  in  sensitivity  to stimulus  category  and  valence.  We  focus  on  differences  arising  from  a  variant  of

the  ADRA2b  gene,  which  codes  for  the alpha2b  adrenoreceptor  as  a way  of investigating  influences  of  NE
availability  on  ABA  in  humans.

© 2013 Published by Elsevier B.V.
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. Introduction

Emotionally arousing events are experienced with a heightened
ividness, and emotionally compelling objects in the environment
apture the eye as we navigate the world. It is, of course, well
nown that we continuously filter incoming sensory information,
electively allocating attention to what is important to us and
uppressing distracting or irrelevant information. Yet the neural
rocesses involved in attentional biases towards affectively signif-

cant aspects of the world remain relatively underspecified.
There is a well-established literature documenting the ten-

ion between ‘top-down’ and ‘bottom-up’ processes in modulating
ttention (for review see [1]). In this literature, ‘top-down’
efers to effortful attentional processes mediated by frontopari-
tal attentional networks and tuned to short-term goals, whereas

bottom-up’ refers to attentional capture by ‘objectively’ salient
timuli such as bright colours, motion, and high contrast [2–4].

Alongside other challenges to the original top-down/bottom-up
istinction [5–7], we have argued that attention is also modulated
y longer-term subjective goals of increasing pleasure and avoiding
ain [8]. Such long-term goals can tune visual attention habitually
o emotionally significant, or affectively salient,  stimuli such as an
ttractive person, an angry face, or a gruesome scene. Based on
bservations that the amygdala and other brain regions key in tag-
ing salience modulate visual cortex activation in a manner similar
o the way frontoparietal regions do [9] we propose that affect-
iased attention (ABA), which tunes visual attention to affectively
alient stimuli, is distinct from both ‘classic’ executive top-town
nd bottom-up visual attention, and is at least in part circum-
cribed by a different set of neural mechanisms (see also [18]). In
his paper we will propose the Biased Attention via Norepinephrine

odel (BANE), a multilevel model incorporating neuromodulatory,
enetic, imaging and behavioural levels of analysis implicated in
ffective biasing of attention and memory. BANE focuses on the
nfluence of noradrenergic processes on activation patterns in hubs
f the ‘anterior affective system’ [10], including the amygdala and
rbitofrontal cortex, which in turn modulate activity in other brain
egions implicated in affect-biased visual attention and memory.
his system is responsible for directing attention to and heighten-
ng the subjective vividness of perceived emotional events, which
n turn enhances memory vividness. In this paper we will review
vidence for BANE, arguing that affect biased attention can mod-
late visual cortex activity in a manner distinct from – although
t times overlapping and/or interacting with – the frontoparietal
xecutive network.

We will first review literature on ABA, and will then discuss
otential neural mechanisms underlying ABA, particularly biased
ompetition, which facilitates the influence of frontoparietal net-
orks on the visual cortices in selective attention. We will further

eview recent evidence that biased competition may  underlie ABA
s well. We  will then look at the role of norepinephrine (NE) and
Please cite this article in press as: Markovic J, et al. Tuning to the significan
visual  perception and memory. Behav Brain Res (2013), http://dx.doi.org/1

he locus coeruleus (LC) of the brainstem in ABA and memory.
E is produced by LC neurons, which have widespread projec-

ions throughout the brain [11], and facilitates processing of salient
vents [12–14]. We  will then review evidence about individual
 . . . .  . . .  . . . . .  .  . . .  .  . . . . .  . .  . . . . . . .  . . . . .  . . .  .  . . .  . . .  .  .  . . . . .  .  .  .  .  .  . . . . . . . . . .  .  . .  .  . 00

differences in ABA and memory, focusing on individual differences
arising from a common variant of the ADRA2b gene coding for the
alpha2b adrenoreceptor, which influences extracellular NE avail-
ability. Finally we will present the BANE model in detail based on
the evidence previously discussed.

2. Terminology

Before we examine the literature, let us first clarify the key terms
used in this paper. Salience is defined as the quality by which an
aspect of the environment stands out relative to its surroundings
due, perhaps, to its visual features (visual salience) or the goals
of the perceiver. For example, something may be visually salient
because it is high in contrast or brightly coloured or high in motion
in comparison with its surroundings. Because salience is a some-
what circular term – some items catch our attention because they
are salient, and are salient because their qualities catch our atten-
tion – we  use the term in a manner that is descriptive rather than
explanatory. As such, it can be a useful concept in that it allows
us to examine the properties that determine salience in a given
context. Affective salience is the tendency of an item to stand out
relative to its neighbours due to an association between its seman-
tic meaning and a history of emotional arousal [8]. Affect-biased
attention (ABA) is attention biased towards stimuli that are affec-
tively salient because they have a developmental history of pain
and pleasure, approach and avoidance.

We have claimed that in affect-biased attention, motivational
goals tune affective control settings, habitual ‘mental sets’ that are
shaped by one’s history of emotionally arousing experiences [8].
We suggest that, over time, affective control settings come to be
applied reflexively. Thus, whereas we  may  be tuned to stimuli that
are visually salient because evolution has tuned us to attend to
moving or high contrast aspects of the environment, we may  be
similarly tuned to affectively salient stimuli because of our history
of emotional experience with them.

Building on the modulation hypothesis of McGaugh, Cahill and
colleagues [15,16], BANE proposes that ABA influences emotional
enhancement of memory. According to the modulation hypothe-
sis, the effects of arousal on initial memory formation, or encoding,
interact with the influence of arousal on longer-term memory con-
solidation processes to bias memory for emotionally salient events.
To encode an event is to process the relevant sensory information
into a unified, coherent construct so that it may be remembered.
Consolidation is divided into short- and long-term processes. The
former is a set of molecular processes required for the creation
and change of synaptic connections and occurs during the hours
after the experience [17]. Long-term consolidation is the set of pro-
cesses responsible for large-scale reorganization of neural memory
systems [17].

3. Caveat
t: Neural and genetic processes underlying affective enhancement of
0.1016/j.bbr.2013.11.018

Previous research has uncovered two  functionally independent
attentional systems in the cortex: a dorsal-frontoparietal network
involved in top-down selection of stimuli and responses which
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Fig. 1. Diagram of a dual-target rapid serial visual presentation (RSVP) task used to
measure the attentional blink. Participants were instructed to ignore words appear-
ing in black and to report the identity of the targets appearing in green. The time
lag  between the first (T1) and second (T2) target was varied. When T2 is presented
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nvolves the intraparietal cortex and superior frontal cortex and
 right-lateralized ventral-frontoparietal network sensitive to the
ottom-up salience of stimuli and which is centred on the tem-
oroparietal cortex and inferior frontal cortex [2]. BANE is a model
f the ABA system. Though Corbetta and Shulman [2] state that the
entral system is responsible for detecting behaviourally relevant
timuli, we should note that the ABA system is distinct from the
ight ventral-frontoparietal attentional system because it is respon-
ible for directing attention to stimuli with an individual history of
eward and punishment. In contrast, Corbetta and Shulman’s right
entral frontoparietal system orients attention to objectively visu-
lly salient, task relevant and unexpected stimuli (although some
egions, such as lateral intraparietal cortex (LIP), may  be key nodes
n both affective salience and bottom-up salience systems).

. Affective salience enhances visual perception and
emory

There is an extensive body of literature on ABA and its neu-
al correlates, including how ABA interacts with classically defined
op-down and bottom-up attentional systems, and a full review is
eyond the scope of this paper (for reviews see [18,19]). In this
aper, following a brief overview of background research estab-

ishing prioritized processing of affective salience, and a review of
ur own work revealing emotional enhancement of perceptual and
nemonic vividness, we will focus on noradrenergic contributions

o ABA as illustrated by select studies.
A large body of research has shown that affectively salient stim-

li elicit enhanced behavioural and neural processing compared
o more neutral stimuli. Emotional stimuli capture attention more
asily when they are at the threshold of awareness [20] and when
everal stimuli are in competition for attention [21,22]. We  are also
ore easily distracted by affectively salient stimuli when focusing

n another task [23,24]. Finally, we generally have better memory
or emotional than mundane events [25–29] (but see [30,31]).

At the neural level, affective salience has been strongly linked to
ncreased activity in sensory cortices. Neuroimaging studies have
hown that affectively salient images evoke greater visual cortex
ctivation than mundane ones [32–36], an effect that is paralleled
or affectively salient sounds in auditory cortex [37–39]. This effect
s found for social stimuli as well as emotionally arousing scenes:
ace-specific regions of the fusiform cortex have been found to
how greater fMRI activation for fearful than neutral faces even
hen processing facial expression is not part of the task [40–42].

uch enhanced activation of fusiform cortex is also associated with
etter detection of emotional faces [43,44].

Affectively salient stimuli also evoke enhanced event-related
otentials (ERPs) at both early and late latencies, suggesting both
apid and extended prioritization of salient aspects of the world
45,46]. Importantly, enhanced activity for affectively salient stim-
li has been observed in very early ERP components which are
lso sensitive to classic ‘top-down’ attention. These include the C1
47,48] a very early ERP generated by the striate cortex reflecting
ow-level visual features, and the P1 [49], a component primar-
ly indexing extrastriate cortex activity [50]. Although there is
till some controversy about the latency at which affective salient
ffects can be observed, these finding suggest that very early visual
ortex activation is sensitive to predictions/expectations related to
rior learning about affective salience.

One line of our own research has focused on enhanced percep-
ual encoding of affectively salient stimuli as a marker of affectively
Please cite this article in press as: Markovic J, et al. Tuning to the significan
visual  perception and memory. Behav Brain Res (2013), http://dx.doi.org/1

uned attentional sets. An experimental paradigm that has been
seful in indexing affective biases in attention is an emotional vari-
nt of the attentional blink (AB) paradigm. In classic AB studies,
wo target words are presented among a series of distractor stimuli
within 500 ms  of T1, the attentional blink typically occurs. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
the article.)

(Fig. 1). The attentional ‘blink’ itself is a phenomenon where par-
ticipants are typically unable to report a target stimulus when it is
presented within ∼500 ms  of a previous target in a rapid stream of
stimuli. According to one interpretation of the AB, the blink reflects
a failure to switch attentional sets from those tuned to the category
of the T1 stimulus to those tuned to the T2 stimulus if it appears
too quickly after T1, resulting in impaired perceptual awareness
[51]. Anderson [22] used a version of the AB paradigm to examine
whether emotionally salient T2 stimuli are less subject to the atten-
tional blink than neutral stimuli. The first experiment compared
AB for negatively valenced high-arousal words (e.g. “rape”), nega-
tively valenced low-arousal words (e.g. “hurt”), and neutral words
(e.g. “rule”). Results showed that negatively valenced high-arousal
words had a significantly smaller blink effect than negatively
valenced low-arousal words, which themselves had a smaller AB
effect than neutral words. Thus, emotionally salient and negatively
valenced words were easier to detect than neutral words or, in
other words, that there was  an emotional “sparing” of the blink
for such words. The second study showed that this effect applied
to positively valenced target words as well, implying that what is
important for detection of the stimuli is emotional arousal rather
than valence. A further series of experiments ruled out potential
confounds for the sparing of emotional words. In conclusion, these
experiments revealed that when attentional resources are limited,
emotionally salient stimuli are perceived more easily than neutral
stimuli – a finding that may  reflect more resilient attentional filters
for affectively salient stimuli.

4.1. Affective salience enhances the subjective quality of
perception and memory

Another line of our research has focused on enhanced subjective
experience of perceptual and mnemonic vividness for affectively
salient stimuli. While it was  established that emotional events
are typically (though not always) better remembered than mun-
dane ones [52–54], it was not known whether emotional events
are remembered more vividly because they are experienced as
more vivid in the first place. To investigate whether emotional
salience influences the subjective experience of perceptual vivid-
t: Neural and genetic processes underlying affective enhancement of
0.1016/j.bbr.2013.11.018

ness, we  employed an emotional version of a classic magnitude
estimation paradigm from psychophysics experiments of the 1950s
[55,56]. In a classic magnitude estimation task, participants are pre-
sented with a stimulus (e.g. a light or a tone) and are asked to
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ig. 2. Task design for Noise Estimation experiment. A standard, created by phase 

he  target image overlaid with 10%, 15%, or 20% noise. Following image offset, part
rom  “a lot less noise” to “same as standard” to “a lot more noise.”

ompare the magnitude of the stimulus to a standard presented
t a constant magnitude. In our adaptation, emotionally salient
nd neutral images, which were equated for contrast and lumi-
ance, were overlaid with one of three levels of Gaussian visual
oise and standards were created for each image by scrambling
he image so its contents were not recognizable and overlaying a
tandard level of noise (Fig. 2). Participants were asked to judge the
roportion of noisiness of each image relative to a standard [57].
his design allowed us to look at the subjective vividness of affec-
ively salient relative to neutral images measured as the signal of
he underlying image relative to the overlaid noise. Results showed
hat participants were very accurate in estimating objective levels
f noise. Crucially, both positive and negative arousing images were
erceived as less noisy, or more perceptually vivid, than neutral

mages. Even after controlling for the objective characteristics of
ach image, participants still rated positive and negative images as
ontaining lower levels of noise, suggesting that affectively salient
mages are subjectively experienced as more vivid than mundane
nes. Moreover, when we created a direct measure of perceptual
ividness by calculating the inverse of the noise estimation ratings
Please cite this article in press as: Markovic J, et al. Tuning to the significan
visual  perception and memory. Behav Brain Res (2013), http://dx.doi.org/1

NE−1, a measure of how clearly or vividly the image signal under-
eath the noise was perceived), we found that, image by image,
erceptual vividness predicted ratings of emotional salience.
his relationship remained after controlling for computational
bling the target image, was overlaid with 15% noise. The standard was followed by
ts moved a cursor on a scale to indicated NE for the image relative to the standard

measures of objective visual salience, such as colour, image com-
plexity, and a composite measure of visual salience [58,59],
indicating that affective and objective salience make dissociable
contributions to perceived vividness. We refer to this influence
of emotional salience on perceptual vividness as emotionally
enhanced vividness (EEV).

Several control studies were performed to rule out confound-
ing explanations. To eliminate the possibility that noise ratings
were driven by differential deployment of overt attention, we used
eye tracking to control for differences in looking patterns. We
found that emotional salience did predict patterns of overt atten-
tion, with more fixations for affectively salient images; however,
emotional salience predicted perceptual vividness after control-
ling for number of fixations, and fixations did not statistically
mediate emotional salience. Thus, deployment of overt attention
did not account for the influence of affective salience on noise
estimation ratings. The main effect of affective salience on noise
estimation ratings was  sustained in experiments using grayscale
images, images with lower levels of noise and a single presen-
tation of each image, indicating that greater perceived vividness
t: Neural and genetic processes underlying affective enhancement of
0.1016/j.bbr.2013.11.018

for affectively salient images is not affected by image colour or
differential effects arising from repetition of emotional images;
rather, it is due to the emotional content of the images themselves Q6
(Fig. 3).
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Fig. 3. Noise estimation results. Arousing images were psychophysically scaled to contain less noise, i.e. were perceived as more perceptually vivid, despite equal levels of
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bjective noise. The right side of the image illustrates a 15% decrement in noise level
ontrolling for objective salience related to low-level featural characteristics of the 

n  left insula (left), LOC (right), and amygdala (bottom).

To see if the behavioural phenomenon of EEV reflected relatively
apid perceptual processes rather than later conceptual evaluative
rocesses, we further examined the time course of ERP activity fol-

owing presentation of the images. We  focused on the postsensory
2, an early- to mid-latency positive peak measured at occipital
lectrodes and implicated in object discrimination and enhanced
ttention to affectively salient images [60,61]. We  found that P2
mplitude was greatest for the least noisy images and impor-
antly, that there was an effect of affective salience, with larger
2 amplitudes for negative and positive versus neutral images.
hat P2 amplitudes reflected objective perceptual vividness and
ubjective affective salience suggests that EEV involves relatively
apid perceptual processing and that emotionally salient images
re perceived in the manner of objectively clearer images. This
orresponds with the behavioural data indicating that participants
erceive emotional images more vividly.

Finally, we employed fMRI to examine potential modulatory
ources of EEV, to determine whether emotionally enhanced per-
eption reflected enhanced visual cortex activation, and to examine
he relation between amygdala and visual cortex activation in rela-
ion to EEV. We  found that activations in the left amygdala as well
s left lateral occipital cortex (LOC), which plays a role in object
iscrimination [62–64], and a region of left dorsal posterior insula
hought to function as primary interoceptive cortex [65,66], modu-
ated NE−1 for emotional images. Further analyses of co-activation
PPI) found correlated activity between amygdala and visual cor-
ex for affectively salient but not for neutral images. Statistically,
mygdala activation mediated the influence of LOC and posterior
nsula on EEV. These findings can be interpreted as reflecting the
ole of the amygdala in tagging affective salience, which in turn may
nhance both the experience of seeing (reflected in LOC activation)
nd gut feeling (reflected by posterior insula activation). Finally,
ctivation in parietal and frontal regions which function as hubs
n executive attentional networks was negatively correlated with
E−1 suggesting that in this task there was a trade-off between
xecutive attentional activity and amygdala-mediated modulation
f ABA.

In short, we found that emotional salience modulates the sub-
ective visual experience of seeing an image. Moreover, our results
uggest that emotional salience modulates object-based atten-
Please cite this article in press as: Markovic J, et al. Tuning to the significan
visual  perception and memory. Behav Brain Res (2013), http://dx.doi.org/1

ion, making a subjectively salient object appear more objectively
alient. In this case, the amygdala, a hub of the anterior affective
ystem, accounted for enhanced visual cortex activation linked to
EV in a manner that is consistent with the hypothesis that anterior
the left. (b) Image by image, emotional salience predicted perceptual vividness after
. (c) fMRI activation parametrically modulated by emotionally enhanced vividness

affective networks modulate visual cortex activation similarly to,
but dissociable from, frontoparietal networks. This result converges
with electrophysiological findings that both affective salience [47]
and state [67,68] modulate visual processing independently but
similarly to executive top-down attention. Moreover, there was a
tradeoff between activation in anterior affective networks and fron-
toparietal networks associated with top-down executive attention.
Thus, in terms of executive attention, our results indicate that par-
ticipants were not just attending more to affectively salient images
– they were attending differently.

A second line of interest concerned whether EEV at the time
of encoding was related to memory vividness. Previous studies
have demonstrated that affectively salient images are typically
better recollected than neutral ones (e.g. [53] but see [69]). More
specifically, participants show greater memory for the goal-related
and emotionally salient aspects of images [70,71]. These effects
may  be due to differences at the time of perceptual processing
between emotionally salient and neutral images. Emotional events
are encoded more easily [22,32,44,72] and enhanced memory of
emotional images is associated with increased amygdala activa-
tion [73,74] and high-level visual cortex activation [75,76] at the
time of encoding.

To test whether perceptual vividness at the time of encoding
predicts memory vividness we  employed two  memory tasks: a
cued recall task and a recognition memory task [57]. The cued
recall study was performed 45 min  after the completion of the noise
estimation task. Participants were given one-word cues that corre-
sponded to one of the pictures seen in the noise estimation task and
asked to provide a written description of the picture in as much
detail as possible. Descriptions were rated for number of details
recalled from correctly remembered images, including thoughts
and emotions associated with the image. Participants recalled more
details about affectively salient than neutral images, and inverse
noise estimation was  correlated with number of details recalled
as well as associated thoughts and emotions. Thus, although par-
ticipants were not more likely to recall an emotional image than
a neutral one, it appears that the vividness with which we  view
emotionally salient images modulates memory vividness as well.

In the recognition memory task, participants returned one week
after performing the noise estimation task. They were shown all
t: Neural and genetic processes underlying affective enhancement of
0.1016/j.bbr.2013.11.018

of the images from the original task as well as unfamiliar images
matched for emotional salience, scene content and objective image
characteristics. Participants were asked to rate each image as old
or new and to rate the vividness of the memory. Again, NE−1
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ignificantly predicted memory vividness after controlling for
bjective salience. Thus EEV contributes to some of the vividness
f emotional memory, though it is likely that post encoding con-
olidation processes play a further role in memory vividness as
ell [77,78]. fMRI findings further revealed that the same regions

f amygdala and LOC that modulated EEV modulated subsequent
atings of recognition memory vividness [79]; however memory
ividness was uniquely modulated by additional activity in hip-
ocampal and parahippocampal regions. These findings suggest
hared neural substrates for the influence of emotional salience
n perceptual and mnemonic vividness, with amygdala and visual
ortex activation at encoding contributing to the experience of both
erception and subsequent memory. However, memory vividness

s also predicted by unique patterns of neural activity.
In summary, the noise estimation studies showed that affective

alience contributes not only to ease of detecting an image but also
o the quality of one’s visual experience. Thus, not only do emo-
ional images grab attention more easily, but we also see them more
learly. Affective salience is a distinct source of perceptual vivid-
ess – contributing to an image’s vividness in a manner additional
o the image’s objective visual characteristics. The enhanced per-
eptual vividness of emotional images is due to rapid perceptual
rocessing rather than later conceptual processing. Furthermore,
he enhanced processing received by affectively salient images at
he time of perception trickles down to impact memory processes.
he vividness of an image during perception and the emotional
alience of an image both contribute to the vividness of an image
n memory.

Thus, a large body of research has established that affectively
alient stimuli enjoy prioritized attention and perceptual encod-
ng, and elicit rapid and prioritized sensory enhancement. Our own
ndings have established that they also enhance the vividness of
ubjective perceptual experience, which in turn predicts memory
ividness. Current research questions involve specifying in greater
etail which aspects of an emotional stimulus influence attention,
eural mechanisms underlying prioritization of affective stimuli
nd how these may  differ between individuals, and how affective
iases are acquired through experience.

. Potential neural pathways and mechanisms underlying
ffect-biased attention

.1. Neuroanatomical pathways mediating ABA

Previous research has established that feedback connections
etween the amygdala and visual areas play an important role

n mediating enhancement of visual cortex activity for affectively
alient stimuli [32,80–82]. There are bidirectional connections
etween the amygdala and early visual areas in the striate and
xtrastriate cortices [83,84]. Moreover, patients with amygdala
esions and an intact visual cortex lack the typically found enhanced
eural response to affectively salient stimuli [80]. fMRI research
sing sophisticated analysis approaches such as dynamic causal
odelling have provided functional evidence for amygdala mod-

lation of visual cortex when participants view affectively salient
timuli [85]. Yet although much research has focused on amygdala
athways, critics of an amygdalo-centric approach suggest that the
mygdala is not the sole hub of affective salience detection but is
ne hub among several participating in parallel cascades of acti-
ations in networks mediating the influence of affectively salient
timuli on sensory processing [86,87]. Other regions that serve as
Please cite this article in press as: Markovic J, et al. Tuning to the significan
visual  perception and memory. Behav Brain Res (2013), http://dx.doi.org/1

ubs in an “anterior affective system”, such as the orbitofrontal
ortex (OFC) are also potential modulators [10,44].

Pessoa and Adolphs further argue that visual information is pro-
essed by multiple parallel channels, and that the cortex plays a
 PRESS
 Research xxx (2013) xxx– xxx

large part in filtering visual information [87]. They propose that a
key region for ABA is the pulvinar – especially its medial nucleus.
The pulvinar receives visual input from the superior colliculus,
retina and striate and extrastriate visual cortices, and its medial
nucleus may  be responsible for determining the behavioural rel-
evance of a stimulus due to its connection with amygdala as
well as multiple cortical regions such as the OFC, cingulate cor-
tex, insula and parietal regions [87]. These authors suggest that
the amygdala is a “convergence zone” for information relevant to
object processing. The importance of the amygdala for ABA comes
from its broad connectivity to other subcortical regions and to the
cortex. The amygdala not only receives visual information from
higher-order visual association cortices in the anterior temporal
lobe [84], it also has many connections to the cortex including
medial, orbital and lateral regions of the prefrontal cortex [88].
Thus, the amygdala impacts visual processing through both of
these (direct and indirect) connections to the visual cortex. Another
recent model emphasizes the role of NE in amygdala entrainment
of widespread network co-activation in response to salient events
[89]. In this paper we further emphasize the role of the LC/NE
system in modulating specific neuronal mechanisms of selective
attention in visual cortex in interaction with the anterior affective
system.

5.2. Biased competition as a mechanism of ABA

Neural mechanisms underlying modulation of the visual cor-
tex by regions tagging affective salience are as yet underspecified;
however, a potential mechanism is biased-competition, since this
is a well-mapped mechanism underlying executive influences on
visual attention. In biased-competition models of visual attention,
top-down ‘attentional control settings’ bias attention to features
of the environment that are relevant to one’s goals. Biased com-
petition has been characterized in terms of three principles:
competition, i.e. the brain systems that represent visual informa-
tion are competitive and a gain in processing for one stimulus
comes at the cost of inhibition of activation tuned to other stimuli;
control, i.e. there are mechanisms to allocate increased weight to a
certain stimulus, and integration, i.e. when competition is resolved
in favour of a certain stimulus in one system this stimulus will gain
dominance in other systems as well [90].

Beck and Kastner have reviewed evidence that stimuli compete
for representation throughout the visual cortex and that competi-
tion can be biased for spatial location as well as object features [91].
For executive attentional biasing, frontoparietal networks modu-
late visual cortex activation so that activity is enhanced in regions
responsible for task-relevant stimuli and activation is suppressed
in regions responsible for competing stimuli. For instance single
cell recordings of monkey visual cortex have shown that when a
monkey attends to one of two  competing stimuli within a neu-
ron’s receptive field (RF), responses to the pair of stimuli in areas
V2, V4 and MT  are weighted to the attended stimuli, i.e. they are
similar to response given to the attended stimulus presented alone
[92–94]. Such findings are supported by fMRI studies on humans,
which show increased activation in V4 and TEO in situations of
competition [95]. Thus in directing their attention, subjects were
able to enhance processing of one stimulus and suppress process-
ing of competing stimuli. Beck and Kastner [90] review evidence of
executive modulation via the frontoparietal cortex based on spa-
tial location and stimulus features, though they note that top-down
modulation is also possible based on memory or emotional mech-
anisms.
t: Neural and genetic processes underlying affective enhancement of
0.1016/j.bbr.2013.11.018

We  posit that activity in hubs of the anterior affective system
(amygdala, orbitofrontal/ventromedial cortices) as well as the
locus coeruleus similarly modulates visual cortex activity based on
the affective salience of the stimulus. This hypothesis is supported
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responses to neighbouring frequencies while sparing response to
the best frequency [111]. It is also important for sensory gating,
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y recent findings in non-human primates that visual cortex
ctivation is modulated by stimulus reward value in the same way
hat it is modulated by executive attention [96,97]. The BANE model
uggests that findings related to reward value may  extend to over-
ll stimulus salience, and further propose that connections with
ey salience hubs modulate visual cortex activation for emotion-
lly relevant stimuli while suppressing activation for competing
timuli.

The notion of affect-biased competition is still somewhat spec-
lative, but recent work provides preliminary evidence of biased
ompetition in visual cortex based on the affective salience of stim-
li. EEG evidence of rapid primary visual cortex modulation by
acial expressions is consistent with findings of biased competition

odulated by executive attention [47]. A study taking advantage
f high temporal and spatial resolution of magnetic encephalog-
aphy (MEG) [10] further employed dynamic causal modelling to
redict MEG  differentiation of affectively salient from neutral stim-
li and found evidence for a top-down model that included both
ortical and subcortical pathways allowing for rapid top-down
odulation of visual processing by the anterior affective system.

he orbitofrontal/ventromedial prefrontal cortices play a key role
n this model. Convergent research further suggest that the anterior
ffective system plays a key role in maintaining affective con-
rol settings by maintaining templates for salient items based on
ast experience that function as a ‘predictive set’ that enhances
ontext-dependent visual processing of salient stimuli [98]. More-
ver, OFC/VMPFc activations based on implicitly learned stimulus
ssociations between facial features and personality traits have
een found to predict subsequent inferotemporal activations [99],
gain suggesting a key role for ventral prefrontal cortex in main-
aining pre-existing templates linked to stimulus salience – or what
e have called affective control settings – that modulate visual

ortex activity.
In an innovative study specifically examining patterns of affect-

iased competition in visual cortex, Wieser et al. [100] employed
teady state visually evoked potentials (ssVEPs) to examine pat-
erns of ABA related to trait anxiety. The ssVEP is an oscillatory EEG
esponse to flickering stimuli whose oscillatory frequency matches
hat of the driving stimulus. ssVEPs are useful indices of attentional
llocation, as ssVEP amplitude is linked to allocation of attention
esources to the driving stimulus, and it can be modulated by
oth ‘bottom-up’ sensory processing and ‘top-down’ modulation
f sensory activity. In this study participants viewed Gabor patches
gratings) which were superimposed over pictures of angry, neu-
ral and happy faces [100]. Gabor patches and faces each oscillated
t a different frequency so that ssVEPs for each could be distin-
uished. Participants were asked to detect changes in the direction
f the grating of the Gabor patches, a task which required direct-
ng attention away from the underlying face stimuli. Participants

ere selected for either high or low social anxiety (HSA and LSA)
ased on a preliminary questionnaire. The study found that ssVEP
mplitudes for Gabor patches were attenuated by angry faces rel-
tive to neutral and happy faces for HSA individuals and by happy
aces relative to angry and neutral faces for LSA individuals. Fur-
hermore, the highest cost for processing of Gabor patches occurred
hen the underlying face was angry for HSA individuals and happy

or LSA individuals. This evidence suggests that affective salience
an operate according to mechanisms of biased competition simi-
ar to those that have been well mapped for visual attention, since
ompetition from the face stimuli resulted in diminished resource
llocation to the Gabor patch. Moreover, this study is an elegant
emonstration that individuals may  differ in patterns of ABA to
ifferently valenced stimuli. Thus, preliminary research suggests
hat, at the level of neuronal populations, processes of biased com-
Please cite this article in press as: Markovic J, et al. Tuning to the significan
visual  perception and memory. Behav Brain Res (2013), http://dx.doi.org/1

etition, potentially tuned via Hebbian learning, may  subserve
BA.
 PRESS
 Research xxx (2013) xxx– xxx 7

5.3. Acquisition of affective biases

The question of the learning processes by which such biases
are acquired and sensory systems are tuned is essentially a devel-
opmental question, as many things become salient over repeated
experience in infancy, childhood, and beyond [8]. On a shorter time
scale, such questions can be tractably addressed in the laboratory
in sessions where salience is learned through conditioning. We  can
think about the process of conditioning in terms of the creation
and tuning of affective control settings which track the stimuli that
have proved a significant source of punishment and reward. Human
conditioning studies have revealed that associative learning mech-
anisms play a key role in acquisition of ABA. Convergent research
suggests that learning history continuously retunes neuronal sen-
sitivity to the features of salient stimuli, and that this effect can be
observed in early stages of visual processing. This may occur both
through re-entrant activation of visual cortex from other regions
in affective salience networks, including the amygdala, OFC and LC,
as well as increased local neuronal sensitivity in early visual cortex
– processes that may  operate at different time scales (for thor-
ough review see [86]). Again, ssVEPs have been used effectively to
index enhancement of neuronal population of responses in specific
learning contexts. Recent evidence suggests that sensory tuning
to the salience of conditioned stimuli is mediated by implicitly
acquired Hebbian mechanisms of temporally coordinated neuronal
activity, rather than explicit expectations, again suggesting some
independence from executive modulation of attention [101]. Along
similar lines, future research can examine the role of other learn-
ing processes, such as vicarious learning, in the acquisition of ABA.
Developmental research can address the question of whether there
are sensitive time windows in early life during which affective asso-
ciations may  be more easily acquired or changed.

6. The role of norepinephrine in affect-biased attention
and memory

6.1. The role of norepinephrine in ABA and memory

A further question concerns neuromodulatory influences on
neuronal activity linked to ABA. A comprehensive body of research
on LC–NE activity indicates a potentially key role for this neuro-
chemical system in driving aspects of ABA. Non-human animal
studies have found that motivationally relevant stimuli elicit LC
response [for review see [14,13], and LC–NE activity has been
shown to directly modulate visual cortex activation [102]. More-
over, NE activity in the amygdala is important for recruiting and
coordinating the brain regions that direct attention to emotionally
salient events [103,104]. Let us elaborate further on this evidence.

The LC is structurally well positioned to facilitate ABA. It receives
inputs from the central nucleus of the amygdala [12] as well as
ventral prefrontal regions important for stimulus evaluation and
decision-making (for review see [105]) facilitating tuning of LC
activity to what is motivationally relevant. The LC also projects to
regions of the thalamus and visual cortex [106], allowing for rapid
tuning of sensory responses.

A wide body of evidence suggests that LC neurons facilitate
responses to the behavioural and biological relevance of a stim-
ulus [13], regardless of stimulus valence [12], while suppressing
those to less relevant stimuli. Arousing stimuli elicit phasic LC acti-
vation resulting in release of NE [107–110]. Released NE may  tune
target neurons by improving their signal-to-noise ratio, inhibiting
t: Neural and genetic processes underlying affective enhancement of
0.1016/j.bbr.2013.11.018

allowing silent neurons to become responsive to relevant stimuli
[13]. In non-human animal studies, increased extracellular NE has
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een shown to decrease spontaneous firing while leaving intact
voked response to sensory stimulation in somatosensory, olfac-
ory and auditory pathways [112–114]. For example, NE applied
o auditory neurons in awake monkeys, who were presented with

 series of conspecific vocalizations, resulted in a decrease in
pontaneous activity but a spared response to the auditory stim-
lus [115]. NE also improves spike timing and rhythmicity in
omatosensory and olfactory neurons, suggesting that it provides

 basis for encoding and perceptual accuracy [116–120]. All of
hese studies reinforce the view that the LC–NE system is sensitive
o the behavioural relevance of stimuli and influences perceptual
esponses.

LC activity is also important in associative learning of what is
alient. LC neurons fire in response to direct reward and pun-
shment, and subsequently to any stimuli associated with the
alient event [13]. NE modulation of long-term changes in synap-
ic strength and gene transcription allow this system to guide
ehaviour based on stimulus salience within a given context [12].

Thus, the LC–NE system has the functional and anatomical con-
ections needed to facilitate ABA. LC activity is driven by affectively
alient stimuli and is capable of modulating visual cortex activation.
ased on this evidence, BANE posits LC–NE activity as an important
riving force behind ABA. One hypothesis that emerges from this
odel is that, in humans, LC–NE activity modulates biased compe-

ition in the visual cortex, biasing processing of affectively salient
timuli (Fig. 5).

According to the modulation hypothesis [121] the influence of
E linked to arousal at encoding interacts with the influence of
E on more sustained consolidation processes, resulting in more
ivid memories for emotionally salient stimuli. In this regard, non-
uman animal studies have implicated NE in memory consolidation
nd the formation of long-term memories [122]. The amygdaloid
omplex influences memory consolidation processes in the hip-
ocampus, caudate nucleus and other regions. It is also a key
arget site for the LC–NE system, possessing many NE receptors
106]. Cahill and McGaugh [16] provide evidence that NE, stress
ormones, and the amygdala are part of an endogenous memory
odulating system, which influences recall based on the emo-

ional meaning of a stimulus. Noradrenergic activity is implicated in
emory modulation, since infusion of adrenergic antagonists into

he amygdala eliminates memory modulation effects [123]. Non-
uman animal studies provide further evidence that modulation of
tress hormones influencing consolidation are mediated by beta-
drenergic activity in the amygdala [16]. For instance, lesions of
he amygdala and stria terminalis (a major amygdala output path)
lock the memory-enhancing effects of adrenaline, glucocorticoids,
nd drugs that affect the opiate and gabaergic systems [124,125].

The basolateral amygdala (BLA) plays a key role modulating the
ffects of other neurotransmitters and stress-released hormones
n memory consolidation [104,16]. Selective post-training inac-
ivation of the BLA induces retrograde amnesia [126] and lesions
f the BLA block stress-hormone induced memory enhancement
125]. BLA activation can also modulate synaptic plasticity in other
rain regions key for memory consolidation [15]. Moreover, the
ole of BLA in modulation of emotional memory consolidation has
een found to be in part mediated by alpha(2)-adrenoreceptors
127]. In humans, NE activity has been found to play a role in
econfiguring brain network activity both during and subsequent to
xposure to a stressor, suggesting that noradrenergic modulation of
ncoding and memory occurs via reorganization of large-scale co-
ctivation between regions sensitive to affective salience [85,89].
hus, not only is NE activity key for ABA for salient stimuli within
Please cite this article in press as: Markovic J, et al. Tuning to the significan
visual  perception and memory. Behav Brain Res (2013), http://dx.doi.org/1

ny given context, but noradrenergic activity in the amygdala at
ncoding may  interact with NE activity implicated in memory con-
olidation processes, ensuring that events tagged as most salient
re not only more vividly perceived but better remembered. The
 PRESS
 Research xxx (2013) xxx– xxx

BANE model further hypothesizes that noradrenergic activity mod-
ulates behavioural and neural correlates of emotionally enhanced
perceptual and mnemonic vividness found in our previous studies
(Fig. 5).

7. Individual differences in NE influence on affect-biased
attention and memory

7.1. Individual differences in ABA

Individuals differ both in the capacity for ABA and memory
and in the relative salience of different categories of stimulus – in
particular stimulus valence. In the study of individual differences,
attentional biases are typically not measured by indices of ABA as
we have defined it in terms of affectively biased attentional sets
that pre-tune visual attention prior to encountering stimuli. Rather,
biases are measured primarily by indices of difficulty in disengag-
ing spatial attention from the location of affectively salient stimuli
after they have been presented [128] – as a kind of attentional
“stickiness,” or failure of executive control processes.

Behavioural and ERP studies of attentional biases indicate that
individuals with temperamental anxiety show greater attentional
stickiness to threatening stimuli than non-anxious individuals
[129–131]. Attentional bias for threatening stimuli is also asso-
ciated with lower threshold for amygdala activation to threat
[130,132]. Recent reviews have summarized current research on
the relation between threat-bias and anxiety [133], including an
examination of the time course of responses to threat-related stim-
uli in attentional bias [134], as well as biases associated with
personality measures [135]. In the other direction, biases towards
positive stimuli have been linked to extraversion [136]. In addi-
tion to being linked with traits, attentional biases can be learned
through conditioning and are associated with trauma [137–139].
For instance, individuals with PTSD showed increased perceptual
and amygdala sensitivity to stimuli associated with the trauma
[140,141].

Individual differences in attentional biases have been observed
early in development, and can influence behavioural outcomes.
Attentional stickiness to the location of threatening stimuli in
children with temperamental inhibition has been found to pre-
dict whether they would show social withdrawal behaviour at
age five [142]. Such biases can be reinforced by experience over
the course of development. For instance, children with a short
version of the 5HTTLPR (serotonin-transporter-linked polymorphic
region) in SLC6A4, the serotonin transporter gene, which is asso-
ciated with temperamental fearfulness and amygdala sensitivity
to threat [143,144], are more likely to have a family environment
that emphasizes threat stimuli, thus exacerbating the underlying
trait [145,146]. On the other hand, sensitivity to negative stimuli
can be attenuated by the ability to shift attention. Children high
in negative affect and effortful control – a trait which includes the
ability to volitionally focus and shift attention – do not show the
attentional bias to threat displayed by children with negative affect
and low effortful control [147]. Clinical research has explored the
possibility of improving anxiety symptoms by training attention.
Attentional Bias Modification (ABM) uses a cueing task to train par-
ticipants’ attentional biases by placing targets more frequently at
the location of neutral than negative stimuli. ABM has diminished
attentional bias towards negatively valenced stimuli and reduced
anxiety scores in clinical and non-clinical populations [148] as well
t: Neural and genetic processes underlying affective enhancement of
0.1016/j.bbr.2013.11.018

as children [149]. That training attentional biasing has an effect
on anxiety scores suggests that attentional biases may  be partially
responsible for producing anxiety symptoms. However, it should
be noted that ABM research is in its preliminary stages, effect sizes
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Fig. 4. ADRA2b influence on the attentional blink as measured by accuracy at Lag
1,  when the second target word directly follows the first and the attentional blink
effect is greatest. Whereas both ADRA2b deletion carriers and non-carriers showed
the typical ‘emotional sparing,’ or greater accuracy for affectively salient words,
only deletion carriers showed an additional sparing over non-carriers, suggesting
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re small, and replication studies are needed to confirm the effect
f ABM on subsequent outcomes and emotional responses [150].

.2. Genetic influences on ABA

Now that we have reviewed the role of NE in ABA and mem-
ry, we turn to genetic variations linked to NE availability that
ay  partly underlie these individual differences. A deletion vari-

nt of the ADRA2b gene coding the inhibitory noradrenergic �2B
eceptor is missing 9 base pairs, which impairs receptor regulation
y G protein-coupled receptor kinase leading to a loss of receptor
esensitization [151]. As inhibitory activity is itself inhibited, car-
ying the deletion variant results in higher levels of extracellular
E availability.

A recent seminal study linked the ADRA2b deletion variant,
hich was previously associated with vasoconstriction, to emo-

ional memory [152]. In this study, participants viewed neutral and
ffectively salient images and performed a free recall task shortly
fterward. Whereas all participants showed greater recall for the
rousing images, ADRA2b deletion carriers showed a significantly
reater emotional memory enhancement in the laboratory. The
ame study found that survivors of Rwandan genocide who carried
he deletion variant were more vulnerable to intrusive memories
haracteristic of post-traumatic stress disorder (PTSD).

A further question concerns whether the ADRA2b influences
motional memory by enhancing encoding, consolidation, or both.
he hypothesis that ADRA2b plays a role in perception is supported
y evidence that deletion carriers show increased amygdala acti-
ation to negative arousing images relative to non-carriers [153].
urthermore, in a study using the emotional attentional blink, par-
icipants given reboxetine (a selective NE reuptake inhibitor which
ncreases the amount of available NE) showed a smaller blink for
motional stimuli – a greater emotional sparing – than participants
iven a placebo [154]. In a recent study, we used an emotional atten-
ional blink paradigm to directly examine the influence of ADRA2b
n affective biases in perception in a large sample of healthy young
dults [155]. The study employed the AB task to investigate dif-
erences in ABA for positive, negative, and neutral words between
eletion variant carriers and non-carriers while controlling for sex
s well as individual differences in trait neuroticism, working mem-
ry, and other genes potentially implicated in attentional biases.
hereas all participants showed the classic emotional sparing for

ositive and negative over neutral words, deletion carriers showed
 further sparing for negative over positive words (Fig. 4). Thus, this
tudy showed that ADRA2b affects visual encoding, suggesting that
E has an important role in ABA.

LC activity has two phases, ongoing oscillatory tonic activity
nd stimulus-locked phasic activity [156]. The ADRA2b deletion
ariant influences activity at NE �-receptors, leading to their desen-
itization and putative greater NE availability [151]. Whereas NE
-receptor activity is linked with the influence of phasic release of
E on the attention blink task [157], the emotional sparing effect

n the attentional blink task is associated with a tonic increase
n synaptic NE [154]. Our finding that deletion carriers showed a
reater emotional sparing in the AB task suggests that �-receptor
ctivity may  be the mechanism behind emotional sparing, and
hus ABA, via increased tonic levels of NE. This interpretation is
onsistent with a study by Cousijn et al. [158]. In this study, partic-
pants viewed either a violent movie (stress condition) or a neutral

ovie (non-stress condition) and then saw sets of dynamic fear-
ul and happy faces. Amygdala activation was measured during the

ovie and face stimuli. Non-carriers showed an increased amyg-
Please cite this article in press as: Markovic J, et al. Tuning to the significan
visual  perception and memory. Behav Brain Res (2013), http://dx.doi.org/1

ala response to emotional faces only in the non-stress condition,
hereas deletion carriers had such a response in both the stress and
on-stress conditions. As the authors suggest, while non-deletion
arriers seemed to be hitting a ceiling in their amygdala response

860
biased perceptual encoding of negative stimuli is associated with higher levels of
extracellular NE.

to emotional stimuli, deletion carriers possess a further range of
activation. We  may speculate that, as deletion carriers have less
activity at inhibitory alpha2b receptors, a sustained mood induc-
tion may  increase tonic NE levels in carriers only, whereas it may
inhibit them in non-carriers. The greater tonic NE in deletion carri-
ers would then interact with phasic activity to increase amygdala
activation in non-carriers.

In our study, ADRA2b deletion carriers showed greater ABA
towards negative stimuli, consistent with previous findings that
carriers show enhanced amygdala activation during perception of
negative stimuli [153]. An outstanding question concerns whether
deletion carriers show enhanced ABA for negative stimuli because
they find negative stimuli to be more salient than non-carriers, or
whether they show enhanced NE-driven activity for stimuli that are
generally salient to carriers and non-carriers alike (after controlling
for key trait differences), since young adults in this age group show
an overall bias for negative stimuli (e.g. [159]).

The enhanced perceptual processing of emotional events dis-
played by deletion carriers may  result in enhanced emotional
memory via NE �-receptors in the amygdala. A further study exam-
ined whether subjective ratings of affective experience at encoding
predicted the accuracy and confidence of subsequent memory
[160]. The same group of healthy young adults rated positive,
negative, and neutral scenes for level of emotional arousal and sub-
sequently performed a surprise recognition memory task one week
later. Results showed that, for negative images, subjective ratings
of arousal at encoding predicted better memory accuracy one week
later in deletion carriers. In contrast, non-carriers showed poorer
memory when they rated images as higher in arousal. ADRA2b
deletion carriers also demonstrated a stronger overall relationship
between the subjective arousal level of each image at encoding
and memory confidence for the same image one week later [160].
According to the modulation hypothesis, phasic arousal related to
perceptual vividness interacts with more tonic arousal extending
beyond initial encoding to further enhance memory consolidation
[121]. Our finding that carriers of the deletion variant showed a
greater association between arousal at encoding and memory for
emotionally salient images suggests that, for these individuals, it
t: Neural and genetic processes underlying affective enhancement of
0.1016/j.bbr.2013.11.018

is precisely this NE-mediated relationship between encoding and
post-encoding processes that is enhanced – at least for moder-
ately arousing events [see also [122]]. Of course, noradrenergic
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Fig. 5. Key pathways emphasized by BANE model: Green dashed lines indicate NE pathways. Red lines indicate projections to the LC. Thicker lines indicate direct modulation
of  visual cortex activity in affect-biased attention. NE activity is implicated in both stimulus encoding and selective attention [13]. A salient stimulus activates LC neurons,
which project widely to cortical and subcortical regions. LC neurons are highly sensitive to previously acquired associations between a stimulus and punishment or reward.
Descending influences from amygdala (central nucleus) and ventral prefrontal cortices Aston-Jones et al., 2007) provide information about contextually determine relevance,Q10
which can then modulate the pattern of LC firing accordingly. Activity from LC can modulate activity in visual cortex directly, facilitating gating and tuning of neuronal activity
a l cortQ11
a ry enc
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nd  enhancing perceptual acuity directly as well as via the amygdala and prefronta
s prefrontal regions and in turn modulates hippocampus activity related to memo
egend, the reader is referred to the web version of the article.)

nfluences on perception, encoding, and memory do not work in
solation, but interact with the influence of other neuromodulators
13,14]. Although we did not find any interactions with genes mod-
lating serotonin or dopamine, the influence of NE at adrenoceptors
ound in terminals of serotonergic and dopaminergic neurons [14]

ay  also play a role in the influence of ADRA2b on encoding and
emory. Moreover, other neurochemicals may  play a role in dif-

erent aspects of attentional biases. For example, whereas NE may
odulate activity in brain regions associated with object-based

spects of affective salience, serotonin may  influence activity in
egion sensitive to spatial attention/contextual aspects of affective
alience linked to attentional stickiness.

Future fMRI research can use ADRA2b groupings to examine
he role of NE in neural and behavioural markers of emotionally
nhanced perceptual vividness and its relation to memory vivid-
ess, on post-encoding processes in humans as well as potential
ene-gene interactions (epistasis) and interactions with life expe-
ience.

. Summary

The BANE model’s core claim is that ABA is partly driven by
C–NE processes, which interact with activity in hubs of anterior
ffective system key for tagging affective salience and modulat-
ng activity in visual cortices. BANE provides a unified explanation
or multiple streams of data related to ABA. Building on a large
ody of evidence indicating that emotional stimuli elicit enhanced
isual processing compared to neutral stimuli, convergent evidence
Please cite this article in press as: Markovic J, et al. Tuning to the significan
visual  perception and memory. Behav Brain Res (2013), http://dx.doi.org/1

oints to the amygdala and OFC as among the regions that are
mportant for modulation of visual cortex in ABA. Pharmacolog-
cal and non-human animal studies have revealed that affective
alience related activity of this network is partly driven by LC–NE
ices. The amygdala receives contextual information from the hippocampus as well
oding and consolidation. (For interpretation of the references to color in this figure

activity. A body of evidence indicates LC activation is implicated in
tuning and gating of perceptual responses to salient stimuli, allow-
ing for enhanced responses to what is already salient as well as
learning of new associations. Thus, NE activity in the amygdala
may play an important role for recruiting visual cortex activation
associated with ABA (Fig. 5).

The importance of NE in ABA and memory is supported by
genetics studies on ADRA2b, a polymorphism that affects levels of
extracellular NE. ADRA2b deletion carriers are more sensitive to
emotionally salient stimuli. They show greater ABA for negative
stimuli, show a stronger relation between subjective arousal and
memory, experience greater emotional enhancement of memory,
and are more likely to suffer from intrusive traumatic memories.
However, it should be noted that is possible that higher levels of
tonic NE availability associated with the deletion variant increase
responsiveness to salient stimuli in general, and not just those
that are affectively significant. It will be important to investigate
whether deletion carriers are more sensitive to low-level visual fea-
tures than non-carriers and control for any such differences when
investigating the influence of ADRA2b in ABA. It is also important to
note that genetics studies reveal only a correlational relationship
between NE activity and ABA. Further pharmacological studies of
NE demonstrating a causal role for NE systems in human ABA would
substantially strengthen the model.

The BANE model is similar to – and substantially overlaps with –
another recent model of ABA, the MAGiC model [18]. According to
the MAGiC model, emotional stimuli gain enhanced perceptual pro-
cessing via multiple amplification mechanisms operating in parallel
t: Neural and genetic processes underlying affective enhancement of
0.1016/j.bbr.2013.11.018

(and not via a single top-down modulatory source). The MAGiC
model emphasizes the key causal role the amygdala plays in adap-
tive gain processes subserving ABA, and the relative independence
of the amygdala-centred affective attention system. Thus, it focuses
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n the degree to which amygdala-centred systems can process
ffectively salient stimuli even when they are task-irrelevant [161]
r when emotional information is presented outside the focus of
rontoparietal attention [80,162,163]. Like MAGiC, the BANE model
roposes that affectively salient stimuli bias perception through a
entral attentional system – although according to BANE these do
ot necessarily operate independently from frontoparietal atten-
ion (for a similar perspective see [164]). The BANE model further
mphasizes the additional role of the LC–NE system.

. Future directions

The BANE model makes a number of predictions that can be
ested by future research. First, we predict that NE availability

odulates individual differences in EEV, and that ADRA2b dele-
ion carriers will show enhanced EEV supported by enhanced
mygdala/ventromedial activation, which will in turn predict sub-
equent memory vividness. Second, we predict that NE availability
nfluences electrophysiological correlates of biased competition
nderlying ABA, and that ADRA2b deletion carriers will show
reater evidence of biased competition for arousing stimuli than
on-carriers. Third, future research can use the ADRA2b genotype
o investigate noradrenergic contributions to post-encoding pro-
esses associated with affectively enhanced memory. Fourth, the
ANE model can be integrated with computational models of influ-
nce of affective salience on perceptual expectations that guide
ttention according to context [98,165,166]. Finally, pharmacolog-
cal interventions can further probe causal effects of NE availability
n ABA.

A longer term research programme can involve investigation of
he role of NE in learning processes by which ABA develops over
he lifespan, and the influence of both genotype and life experi-
nce in both normal and pathological patterns of ABA, extending
alience-based models of predictive coding to address ABA in a
evelopmental context. Understanding the interaction between
enotype and epigenetic changes due to specific types of experi-
nce will be an important part of such a research programme.

Finally, an important area for future research is to understand
he role of ABA in post-traumatic stress-disorder (PTSD) in conjunc-
ion with research on the influences of genotype, life experience,
nd traumatic event on neurophysiological processes associated
ith generation and perpetuation of PTSD symptoms. For exam-
le are pre-existing patterns of ABA a risk factor for PTSD? Do
DRA2b deletion carriers show evidence of greater ABA for trauma-
elated stimuli than non-carriers and do these patterns of ABA
redict intrusive memory? Ultimately understanding mechanisms
nderlying individual differences in ABA and memory can help us
nderstand mechanisms underlying how they are shaped by life
xperience over development and in trauma.
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